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ABSTRACT 

Supramolecular assembly of benzophenone through urea hydrogen 

bonding interactions facilitates the formation of remarkably persistent triplet 

radical pairs upon UV-irradiation at room temperature, whereas no radicals are 

observed in solution. The generation of organic radicals is correlated to the 

microenvironment around the benzophenone carbonyl, the types of proximal 

hydrogens, and the rigid supramolecular network. High-Field EPR and variable 

temperature X-band EPR accompanied by simulations suggest a resonance 

stabilized radical pair through hydrogen abstraction. Previous work has shown 

that UV-irradiation of self-assembled benzophenone bis-urea host results in low 

quantities of radical pairs that can be used to enhance NMR signals by a factor of 

4 for both the host and the encapsulated guest using a dynamic nuclear 

polarization (DNP) technique. This result suggests that even low levels of 

endogenous radicals can facilitate the study of host-guest relationships in the 

solid-state.2 Additionally, the photochemical formation of reactive oxygen species 

(ROS) by the host was examined, which was found to generate both superoxide 

and singlet oxygen in similar quantities. The host was then applied as a 

nanoreactor to mediate photooxidations of 1-methyl-1-cyclohexene while 

suspended in solution and as a solvent free host:guest complex.
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1.0 ABSTRACT 

Supramolecular assembly of urea-tethered benzophenone molecules 

results in the formation of remarkably persistent triplet radical pairs upon UV-

irradiation at room temperature, whereas no radicals were observed in solution. 

The factors that lead to emergent organic radicals are correlated with the 

microenvironment around the benzophenone carbonyl, types of proximal 

hydrogens, and the rigid supramolecular network. The absorption spectra of the 

linear analogs were rationalized using time dependent density functional theory 

calculations on the crystal structure and in DMSO employing an implicit solvation 

model to describe structural and electronic solvent effects. Inspection of the 

natural transition orbitals for the more important excitation bands of the 

absorption spectra indicates that crystallization of the benzophenone containing 

molecules should present a stark contrast in photophysical properties versus 

solution, which was indeed reflected by their quantum efficiencies upon solid-

state assembly. Persistent organic radicals have prospective applications ranging 

from OLED technology to NMR polarizing agents. 

1.1 INTRODUCTION 

The supramolecular assembly of small molecules through non-

covalent interactions is proving to be a convenient approach in the design 

of hierarchical materials.1-3 Controlled organization of discrete functional 

groups can enhance chemical and physical properties. For example, the 

solid-state assembly of perylene bisimide dyes to form transistors with n-

type charge transport properties4,5 and π-conjugated materials that exhibit 
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enhanced luminescence.6,7 Thus, further insight into how structure 

influences physical function is of great importance for the design of 

synergistic materials with properties tailored to specific applications. Here, 

we compare the impact solid-state assembly has on the photophysics of 

three benzophenone (BP) containing molecules. We report that 

organization of BP units within distinct solid-state environments quenches 

the lifetime and modulates the quantum yield of phosphorescence. 

Moreover, remarkably persistent radicals are generated upon UV-

irradiation at room temperature. The quantity and stability of these radicals 

vary with the chemical environment that surrounds the key carbonyl unit 

(Figure 1.1). Thus, control over solid-state assembly of BP molecules can 

alter photophysical properties and lead to the generation of persistent 

radical pairs with potential applications ranging from OLED technology to 

NMR polarizing agents.8-10 

Benzophenone, a prominent photosensitizer was first reported to 

generate organic ketyl radicals in 1891.11 Although inherent high reactivity 

makes electron paramagnetic resonance (EPR) characterizations difficult 

as they are known to dimerize in solution forming benzopinacol.12 Radicals 

generated by BP in solution are unstable and are typically only observed 

using EPR at low temperatures or through one-electron reduction to form 

the radical anion.13,14 Previously, we reported a bis-urea macrocycle (1) 

that contains two BP units, which assembles into hexagonally packed 

columnar  structures  via   robust  urea   hydrogen-bonding   interactions.15  
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Figure 1.1. Self-assembly modulates the photophysics of BP derivatives and 
gives rise to emergent organic radicals. (A) Structures of urea-based BP 
containing macrocycles and linear analogs, 1-4. (B) Monomers 2 and 3, 
presented as planar for simplicity, assemble through hydrogen bonding 
interactions. UV-irradiation gives rise to persistent radicals as an emergent 
property. Reagents and conditions: a. crystallization; b. UV-irradiation (360 nm, 
rt, under N2). Inset: top down assembly motif of the BP sensitizer in each crystal 
structure, 2 (left) and 3 (right). 
 

Preorganization of the sensitizer impacted its photophysical properties by 

dramatically decreasing the quantum yield and lifetime.16 Most intriguingly, 

UV-irradiation of this crystalline solid gave rise to organic radicals that 

persisted for weeks at room temperature when stored in the dark.10 High-

field and variable temperature X-band EPR studies accompanied by 

simulations suggested that UV irradiation of the crystals results in a 

resonance stabilized radical pair through hydrogen abstraction.10 Our 
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hypothesis is that BP in the excited state abstracts a hydrogen atom from a 

nearby molecule to form ketyl containing radical pairs.  

Herein, we examine the chemical and photophysical properties of self-

organized structures of BP-containing linear analogs and macrocycles (Figure 

1.1A). Macrocycles 1 and 4 vary the position of BP within the cyclic framework to 

probe how orientation of the chromophore influences its crystalline packing. 

Linear analogs, 2 and 3, are comprised of two BP molecules covalently tethered 

through a single methylene urea group and assemble through urea hydrogen-

bonding interactions. The positions of the methyl substituents, meta or para with 

respect to the BP carbonyl, were varied across two different structures in order to 

explore their influence on crystal packing as well as determine the types of H-

abstraction sites near carbonyl oxygen. Our goal is to examine how orientation of 

the BP sensitizer, as well as its relative position with respect to H-abstraction 

sites, impacts subsequent photophysical properties and if these assembled 

benzophenone also display the ability to form persistent radicals upon UV 

irradiation or if this emergent property is a function of the assembled 

macrocycles. 

1.2 RESULTS AND DISCUSSION 

The macrocycles and linear counterparts were synthesized in three 

to four steps using a simple alkylation of a protected urea (triazinanone) as 

the key step.16 Protected analog 2 and macrocycle 4 were structurally 

characterized (see experimental). Colorless solvent-free crystals of 2 and 3 

were obtained by recrystallization. Unfortunately, attempts to crystallize 4 
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through slow cooling, vapour diffusion, and microcrystallization techniques 

did not yield single crystals.  We are currently screening a wide range of 

crystallization techniques including conditions with potential co-crystal 

formers.  

Crystals of 2 were obtained as transparent plates through slow 

cooling in a hot acetic acid solution (120 °C, 6 mg/mL). The sample 

crystallized in the triclinic system in the acentric space group P1 (No. 1). 

The conformation of 2 is linear with the two BP units outstretched on both 

sides of the urea tether (Figure 1.2A). The two BP carbonyl groups of the 

monomer  are  aligned  anti-parallel,  likely to  minimize the dipole moment.  

 
  
Figure 1.2. Single crystal X-ray diffraction (SC-XRD) of linear analog 2, 
which crystallizes through slow cooling in acetic acid in the triclinic system 
as transparent platelets. (A) Thermal ellipsoid plot. (B) View of the urea 
hydrogen-bond interactions that stack BP units on top of each other and 
orient the aryl rings in an edge-to-face motif down the urea tape. (C) Top 
down view of the urea groups showing that the edge-to-face aryl packing 
pattern is maintained between neighboring BP units in two directions 
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Bifurcated urea hydrogen-bond interactions guide the assembly of 2 with 

N-HO distances ranging from 2.873(2)-2.968(2) Å (Figure 1.2B & C). The 

BP sensitizer is ordered down the ab crystallographic plane resulting in a 

lamellar  packing  motif  with   aryl  groups   organized  in  an   edge-to-face 

pattern and CgCg distances (Cg = ring centroid) ranging from 4.601(2)-

4.825(2) Å. The C-HCg distances vary from 3.419(4)-3.637(3) Å with 

angles  ranging  from  127-135°. The  BP carbonyl  oxygens reside in close 

proximity to aryl protons on closely packed molecules of 2 with C=OH 

distances as close as 2.60 Å.  

Slow evaporation of 3 in dichloromethane (1 mg/1.6 mL) resulted in 

the formation of transparent needle-like crystals in the monoclinic system in 

the acentric P21 space group. The profile of 3 is distinct, conforming to a C-

shape with both BP components oriented in close proximity and CgCg 

distances of 8.94 Å between alkyl substituted aryl groups (Figure 1.3). The  

two BP carbonyls of 3 are oriented in the same direction, although the 

carbonyls on neighboring molecules are opposing in direction. Predictable 

bifurcated urea-urea hydrogen bonding interactions stack the sensitizer 

down the a-axis with N-HO distances ranging from 2.800(6)-2.809(6) Å, 

Figure 1.3A. This assembly orients the BP units in a herringbone pattern 

along the b-axis, while the aryl rings are parallel displaced down the a-axis 

with a distance of 4.511(3) Å from centroid to centroid. The carbonyl 

oxygens  reside in close proximity  to  benzyl and  aryl protons  on proximal  
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Figure 1.3. SC-XRD analysis of analogue 3 and macrocycle 1. (A) Slow 
evaporation of 3 forms transparent needle-like crystals in the monoclinic system 
with BP units assembled in a herringbone pattern along the b-axis. The aryl rings 
are parallel displaced down the a-axis. (B) Macrocycle 1 crystallizes in the 
monoclinic system as needle-like crystals with BP units stacked down the a-axis 
resulting in edge-to-face aryl packing down the column. (C) The columns pack 
hexagonally staggering BP units across the c-axis. 

 

molecules of 3 with C=OH distances of 2.60 Å to methyl hydrogens, 2.88 

Å to methylene protons, and 2.64 Å to aryl hydrogens.   

In comparison, previously reported 1 crystallizes as transparent 

needle-like crystals in the monoclinic system in the P21 space group by 

slow-cooling a hot DMSO solution from 120 °C.15 The two BP carbonyl 

carbons of the monomer are 10.2 Å apart and orient the carbonyl oxygens 

pointing outward towards the exterior of the macrocycle. Urea-urea 
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hydrogen-bond interactions drive assembly stacking the BP molecules 

down the a-axis aligning the aryl rings in an edge-to-face motif with C-

HCg distances ranging from 3.559(6)-3.597(7) Å and angles from 124-

130° (Figure 1.3B). The columns encapsulate disordered DMSO 

molecules. The macrocycles are hexagonally packed and the BP units are 

staggered like brickwork along the c-axis.15 The BP carbonyl oxygens are 

in close proximity to neighbouring methylene and aryl hydrogens with 

C=OH distances of 2.41 Å and 2.68 Å, respectively (Figure 1.3C).  

To probe how crystal packing of BP units impacts the overall 

photophysics, we measured the absorption, emission, lifetime, and quantum yield 

for each sample in the solid-state and in argon-purged solutions of DMSO.‡,16   

Table 1 compares these measurements with unsubstituted BP and 1. For both 

linear analogs and macrocycles, the absorption spectra in solution maintained  

Table 1.1. Measured photophysical properties of BP and the BP-urea molecules 
in DMSO solution compared to the solid-state.  

aValues obtained from reference 16. 

PHOTOPHYSICAL 
PROPERTIES 

1 2 3 4 BP 

ε (M-1cm-1) 622a  449  317  297  342a 

λmax,  

Abs 
(nm) 

 
Solution 

ππ*, 270a  
nπ*, 345a 

ππ*, 260  
nπ*, 335  

ππ*, 256  
nπ*, 340  

ππ*, 265  
nπ*, 340  

ππ*, 270a 

nπ*, 345a 

 
Crystals 

ππ*, 355a  ππ*, 382  ππ*, 374  -- ππ*, 381  

λmax,  

 Em 
(nm) 

Solution 435a  474 465  502  435a 

Crystals 489a 528  526 -- 450a 

τ (ns) 
Solution -- 1.5 2.0  1.5 -- 
Crystals 0.32a 0.94 1.3 -- 23,000a 

φ (%) 
Solution -- <0.3 <0.3 <0.3 -- 
Crystals <0.1a 5.0 <0.3 -- 0.5a 
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the major spectroscopic properties of BP, with a strong ππ* band ranging 

from 256-270 nm and a weak spin forbidden nπ* transition from 335-345 

nm. The molar absorptivity for these compounds range from 297-622 M-1 

cm-1 with the para-substituted compounds exhibiting values higher than 

unsubstituted BP and the meta-substituted values being lower (Figure 1.30 

- 1.32). In comparison, solid-state assembly of 1-3 induces an overall 

bathochromic shift in the spectrum λmax = 355-382 nm, with broadening in 

the UV/vis region. This red shift is similar to what is observed upon 

formation of J-aggregates with dyes;17 although this is not a perfect 

analogy as the BP chromophore is not planar. 

The absorption properties of 2 and 3 were examined through time 

dependent density functional theory (TD-DFT) calculations to characterize 

the excited states of these molecules. This was done by calculating the 

absorption spectra of 2 and 3 using the crystal structures in the gas phase 

and an optimized geometry with the polarized continuum model (PCM)18 in 

DMSO. The excited states were calculated at the ωB97XD19/6-31+G**20 

level of theory. More computational details are given in the SI. During 

optimization of 2, the average dihedral angle between the two rings of the 

BP unit shifted from 26.9° to 31.3° (Figure 1.41).  Additionally, the 

benzenes directly connected to the urea spacers move from being in plane 

with each other and roughly perpendicular to the urea unit to a more 

contorted structure. Nevertheless, the spectrum calculated with implicit 

solvation in DMSO shows good agreement with the experimental being 
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only slightly blue-shifted (5 nm) with respect to the main absorption peak 

raised by ππ* transitions. The computations also find the dark nπ* 

transition as the lowest excited state. In comparison, the spectrum of 2 

calculated for the crystal structure in the gas phase is shifted by 119 nm to 

higher energies with respect to the experimental solid-state spectrum 

(Figure 1.4A). Even though the excitation energies differ, the shape of the 

experimental spectra is reproducible and allows for the assignment of the 

lower energy absorption peaks to their corresponding electronic 

excitations. Similarly, the computed absorption spectra for 3 using the 

crystal structure geometry in the gas phase gave roughly the same shape 

with two intense absorption bands raised by the ππ* transitions (Figure 

1.4B). Similar to 2, this spectrum was blue-shifted by 135 nm compared to 

the experiment. As seen before, the nπ* transition was found as the lowest 

excited   state. The   calculated  spectrum   for the   structure  optimized  in 

solution was again only slightly shifted in comparison to the experiment (4 

nm).  

As seen in Figure 1.4C and D there is a stark contrast between the 

occupied natural transition orbitals (NTOs) for 2 and 3. In solution, the 

occupied NTO of 2 covers the entire BP unit including both benzene rings, 

while the corresponding occupied NTO in gas phase with the crystal 

structure geometry, shows contributions from only one of the BP benzene 

rings. Moreover, many of the NTOs contributing to the finer structure for 

the gas phase spectrum show the electron density localized on only one of 
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Figure 1.4. The excited states of 2 and 3 were characterized using TD-DFT 
calculations. The normalized experimental solid-state absorption spectra of (A) 2 
and (B) 3 are compared to their calculated spectra in the gas phase including the 
corresponding spectral lines; the numbers indicate the electronic excited state. 
NTOs for the main transitions of (C) 2 and (D) 3 in gas phase compared to 
solution, where red/blue = occupied orbital and yellow/green = virtual orbital. 

 

 the two aromatic rings of the BP units (Figure 1.37). In comparison, 3 

shows little difference in the electron density distribution moving from gas 

phase to solution. In both cases for 3, the occupied NTO covers the entire 

BP unit. These calculations suggest that 2 should present a stark contrast 

in its photophysical properties when in the solid-state versus in solution, 

while we do not expect strong media effects for 3.   
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The emission spectra recorded in solution (DMSO, 0.9 - 1.0 mM) exhibited 

transitions ranging from 435-502 nm and displayed an overall red shift upon 

solid-state assembly, λem = 450-528 nm. The phosphorescence lifetime of 2 and 

4 in solution (DMSO, 0.9 mM) were the shortest at 1.5 ns, while 3 exhibited a 

slightly longer lifetime at 2.0 ns. Upon solid-state assembly the lifetimes of 2 and 

3 were slightly quenched to 0.94 ns and 1.3 ns, respectively. Such deactivation in 

lifetime suggests that these compounds are prone to intermolecular self-

quenching similar to other BP compounds.21,22 A comprehensive study on this 

phenomenon by the Garcia-Garibay group demonstrated that the lifetime of BP 

nanocrystals with electron donating substituents are dramatically shorter than in 

solution, varying over 9 orders of magnitude depending on the electron donating 

ability of the substituents.22 This is attributed to intermolecular self-quenching via 

a charge transfer mechanism.22 The shorter observed lifetimes for 2 and 3 in the 

crystals are consistent with these prior reports, as the alkyl groups are mildly 

donating.  

The phosphorescent quantum yields of 2-4 in DMSO solution (25 μM and 

1 mM) displayed efficiencies of less than 0.3% in all cases. The low quantum 

efficiency is attributed to unrestricted rotation and vibrations of the sensitizer 

when allowed to move freely in solution. Interestingly, crystallization of 2 

dramatically increased its quantum yield to 5.0% but did not influence 3 as 

predicted by computation. The calculations suggest that the solid-state geometry 

of 2 forces each of BPs benzene rings to act independently, whereas in solution 

the linear analog is able to orient itself so that both benzenes participate in the 
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excitation of the π bands resulting in a loss of independent chromophores. This 

demonstrates that the higher quantum yield observed for 2 upon solid-state 

assembly is likely due to suppressed mobility when locked within the crystalline 

lattice. Literature reports also correlate suppressed mobility with increased 

quantum yields.23-25 Recent studies have shown that halo-substituted BP units 

exhibit enhanced phosphorescence when organized in the solid-state.23 In 

solution, the quantum yields were sufficiently diminished but they became highly 

emissive when frozen with liquid nitrogen.23 Here, we show that restricting 

molecular motion of BP enriched a radiative decay pathway of the triplet excited 

state when only one of BP’s benzene ring participates in the excitation process.  

Typically, upon Franck-Condon excitation, BP undergoes rapid 

intersystem crossing (ISC) from S1T2T1 excited states,26 which can abstract 

nearby hydrogens to form ketyl containing radical pairs as well as undergo other 

excited state (ES) or thermal processes.27 Scheffer proposed that intramolecular 

photochemical H-abstraction is preferred when the C=OH distance is below the 

sum of the van der Waals radii of the oxygen and hydrogen atoms (2.72 Å),28 

while others have observed intermolecular H-abstraction by BP with C=OH 

distances as far as 3.13 Å.29,30 Figure 1.5 compares the microenvironment 

around the BP groups in the three systems and shows that there are, indeed, 

closely preorganized hydrogens (<2.72 Å to BP oxygen). The BP carbonyl in 1 is 

organized more closely to neighboring benzyl protons (2.41 Å) versus the harder 

to abstract aryl protons (2.68 Å). In comparison, in 2 the carbonyl oxygen is in 

close proximity to only the aryl protons (2.60 Å), which have a higher bond 
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dissociation energy (BDE). BP has been found to abstract hydrogen atoms from 

benzene rings, albeit slowly.31 Our hypothesis is that UV irradiation of 2 crystals 

may produce a triplet radical pair in low efficiency versus 1.  Finally, for 3 there 

are proximal benzylic CH3 (2.60 Å), benzylic methylenes (2.88 Å), and aryl 

protons (2.64 Å), which suggests that several different triplet radical pairs could 

be formed. Simple BDE arguments predict the ketyl radicals may be formed more 

easily in compounds 1 and 3 as compared with 2, which only contains close aryl 

hydrogens; as homolytic BDEs are lower for benzyl protons versus aryl (88 

kcal/mol vs 111 kcal/mol, respectively).32 Despite this, BP has been known to 

abstract all three types of protons.29-31 

In an effort to correlate structure with the formation and stability of 

the UV-generated triplet radical pairs, we turned to X-band EPR 

spectroscopy. First, EPR spectra were recorded on solutions of 2 and 3 in 

dichloromethane (1 mM) pre and post UV-irradiation (1 h).§ As expected, 

no EPR signal was observed pre or post UV indicating that any ketyl 

radical formed is quickly terminated in solution (Figure 1.44). Upon UV 

irradiation the linear analog solutions yellowed and showed only minor 

spectroscopic changes by absorption spectroscopy (Figure 1.49).  

Next, solid-state EPR spectra were recorded on triply recrystallized 

samples  of 2 and  3  (~10 mg)  pre and  post UV.§§ After one hour  of  UV 

irradiation, the transparent crystals of 2 turned reddish-brown in color 

(Figure 1.6A), while  the  needle-like crystals  of  3  became  opaque  upon 

removal from the mother liquor and showed a slight yellowing in color upon  
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Figure 1.5. Comparison of the microenvironments around the BP carbonyl obtained 
from the SC-XRD of compounds 1-3. (A) 1 has neighboring aryl and benzyl CH2 protons. 
(B) The carbonyl of 2 resides in close proximity to only neighboring aryl protons. (C) The 
more complex structure of 3 is oriented close in space to two types of benzyls protons 
(CH3 and CH2) as well as (D) aryl protons. 

 
UV irradiation (Figure 1.6B). UV irradiation of the crystals resulted in the 

formation of radicals in both 2 and 3 with g values of 2.005 and 2.007, 

respectively (Figures 1.6 and 1.45). Irradiation of 2 crystals gave rise to an 

isotropic EPR signal. The EPR line width of 3 was similar, but a weak 

second transition was observed at g = 2.003. A g value of 2.003 has 

previously been attributed to the BP ketyl.33 

The concentration of radical pairs generated after one hour of UV-

irradiation was approximated using a calibration of standard solutions of 

TEMPO in benzene (Figure 1.46).10,34 Double integration of the EPR  
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Figure 1.6. Photophysical properties of the triply recrystallized samples of 2 and 
3 pre and post UV-irradiation. (A) The transparent crystals of 2 exhibit green 
fluorescence under UV light and become brown-red upon UV-irradiation. (B) The 
needle-like crystals of 3 show quenched emission and only slightly yellow in color 
after UV-irradiation. (C) EPR of 2 post UV and subsequent dark decay study 
demonstrating that the radicals are persistent for several days at rt. (D) EPR of 3 
exhibits persistent radicals after irradiation with a significant change in EPR line 
shape within 2 h post UV. Comparison of absorption spectra of (E) 2 and (F) 3 in 
solution and their recrystallized solids pre and post UV irradiation for one hour, 
the new absorbance band in 2 at λ = 557 nm is labelled.  

 

signals provides the overall area of the spectra, which were then compared 
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to the TEMPO calibration. One hour UV-irradiation of 2 generated the 

same amount of radical as a 0.053 mM solution of TEMPO in benzene, 

suggesting that approximately 1 in 5,000 molecules of 2 have a radical. In 

comparison, after similar UV-irradiation host 1 showed ~1 in 30,000 

molecules have a radical,10 whereas the linear analog 3 shows radicals in 

~1 in 25,000 molecules (similar to a 0.009 mM TEMPO solution). The 

amount of UV-generated radical formed increases with longer irradiation 

times. This result shows that 2 generates approximately five times more 

radical than 3 after one hour of UV irradiation and demonstrates that 

radical formation is not deterred by higher homolytic BDEs. Though, it is 

possible that the persistence of the radical pair is playing a role in the 

observed concentration difference. 

Therefore, the persistence of the radicals was probed using dark 

decay studies where the samples were stored at room temperature in the 

dark after irradiation and EPR spectra were recorded over time. The dark 

decay study of 2 shows that there was little change in line shape and g-

value (2.005) 140 days post UV-irradiation (Figure 1.6C). Sixty days after 

UV-irradiation, the area of the EPR signal retained half its initial amount, 

demonstrating the remarkable persistence of the radicals of 2 (Figure 

1.47). In comparison, dark decay studies on recrystallized 3 showed a 

faster decay and exhibited dramatic changes in the EPR line shape (Figure 

1.6D). Post UV the broad EPR line exhibited a g-value of 2.007 with a 

weak transition at g = 2.003. Two hours after irradiation the EPR signal 
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retained a similar line shape although a stark change was observed 

between 2 and 3 hours after irradiation with an increase in population of 

radicals at g = 2.003. The overall line width of the spectra remained similar, 

but the area of the signal was decreased by half just 45 hours after UV 

irradiation (Figure 1.48).  In contrast, macrocycle 1 displays a persistent 

radical, which exhibits a modest amount of radical 26 days after irradiation. 

In accordance with the spin selection rule, recombination reactions of triplet 

geminate radical pairs are forbidden and must first undergo ISC to yield a 

singlet radical pair in order to form products.27,33 In solution, H-abstraction 

by BP generally occurs in 10-100 ns while recombination is considered the 

rate-limiting step (>1 μs).27 The enhanced stability of these emergent 

radicals in the solid-state post UV-irradiation is attributed to delocalization 

of the radical pairs, which is further stabilized by the rigidity of the BP units 

upon assembly. Studies have shown that self-recombination reactions of 

the BP ketyl have a rate constant that is an order of magnitude lower than 

cross-reactions.27 This seems to be reflected in the stability of 3 as the 

ketyl radical signal (g = 2.003) became more prominent the longer the 

sample remained at room temperature. 

Figure 1.6E-F compares the absorption spectra of triply 

recrystallized samples (2 and 3) before and after 1h irradiation. The 

absorption spectra of both crystalline samples post UV retained their major 

spectroscopic properties, although both signals broadened into the visible 

region. Most intriguingly, irradiation of 2 afforded a new absorbance band 
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at 557 nm which is consistent with where both the triplet and resulting ketyl 

absorb.12,35,36 It should be noted that the triplet state of BP’s absorption 

peak significantly overlaps with its corresponding ketyl, however the triplet 

is known to absorb out to wavelengths >600 nm.35,36 This long wavelength 

absorption was not observed in the spectra of 3 or 1,10 again suggesting 

that UV-irradiation of 2 affords increased amounts of radicals versus the 

other derivatives. Samples of 2 and 3 were analysed by SC-XRD after UV 

irradiation and revealed no significant structural changes. Similarly, 1H 

NMR spectra were obtained on irradiated samples showing no spectral 

changes, which is consistent with the estimated concentration of the 

radicals (Figure 1.50 - 1.51). Finally, the emission behaviour of the UV 

irradiated crystals was also investigated with no major changes observed 

upon excitation at 355 nm (Figure 1.33).  

We have demonstrated that UV-irradiation of self-assembled BP 

containing molecules can give rise to persistent organic radicals in marked 

contrast to their behaviour in solution. The concentration of the radicals is 

low but is influenced by structure and assembly, as is their persistence. 

Para-substitution of BP containing radical pairs resulted in longer-lived 

radical species while meta-substituted radical pairs displayed decreased 

stability. A comprehensive study on a library of BP containing crystals with 

varying substituent patterns may be fruitful to further elucidate the rules 

that govern ketyl radical pair formation and their subsequent stability.  

1.3 CONCLUSIONS 



www.manaraa.com

 

 21 

In summary, three new BP-containing molecules were synthesized 

and two afforded single crystals that assembled the photosensitizer 

through urea-urea hydrogen bonding interactions. We investigated the 

impact solid-state assembly has on their photophysics and explored their 

ability to form persistent radicals as a result of UV-irradiation. Solid-state 

assembly of the materials resulted in a bathochromic shift in both their 

absorption and emission spectra and quenched their phosphorescent 

lifetime, which is attributed to BPs self-quenching character. The quantum 

efficiency of 2 and 3 was <0.3% in solution, although crystallization 

influenced their quantum yield differently. Crystallization of 2 enhanced its 

quantum efficiency by an order of magnitude but did not influence 3. TD-

DFT calculations on the crystal structures of 2 and 3 in the gas phase and 

in solution were consistent with these experimental observations. The 

computations suggested that crystallization of 2 and 3 would influence their 

photophysical properties differently, predicting a dramatic change in 

photophysics for 2 and little or no difference was expected for 3.  

Self-assembly of compounds 1-3 resulted in three distinct crystal 

structures that vary the microenvironment around the BP carbonyl. 

Remarkably, all of the crystalline compounds exhibit persistent radicals 

upon UV-irradiation even though no radicals were observed in solution. 

The radical formation is attributed to BP carbonyls’ close proximity to 

neighboring H-abstractions sites within the crystal structures. The amount 

of radicals generated after UV-irradiation (1 h) varied six-fold with 2 
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surprisingly showing the largest amount even though only aryl protons with 

higher BDE are close in proximity (2.60 Å) for abstraction, while 

macrocycle 1 exhibited the least amount of radicals. Radicals of 2 also 

displayed the greatest persistence, exhibiting approximately half the EPR 

signal after 140 days.  In each case, the persistence of the UV-generated 

radicals was attributed to resonance stabilization about the rigid crystalline 

framework and may shed light on the impact solid-state assembly has on 

the recombination of ketyl containing radical-pairs. 

1.4 FUTURE WORK 

Future work will be focused on elucidating the factors that govern the 

formation, stability, and applications of the radicals. An interesting and 

speedy way to do this is through machine learning. All data for compounds 

1 – 4 will be given to the Machine Learning Evolution Laboratory (MLEG) 

where they will data mine to determine the physical and structural 

similarities that may contribute to the persistent radical. Next, using the 

Cambridge Structural Database (CSD) all benzophenone-containing 

structures can be surveyed and those that contain similar attributes to 1-4 

can be further investigated through crystal growth and EPR experiments to 

fine tune and further develop the factors that are important for persistent 

radical formation. It is also of interest to examine the ability of 2-4 to 

undergo triplet-triplet annihilation pathways with molecular oxygen to 

generate reactive oxygen species (ROS). In the case of linear analogs 2 

and 3, they exhibit enhanced solubility allowing us to directly compare the 
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how solid-state assembly influences ROS generation. In the case of 4, only 

the crystals can be examined, as they are only soluble in DMSO, a well-

known chemical quencher of singlet oxygen.  

1.5 EXPERIMENTAL 

SYNTHESIS AND CHARACTERIZATION OF COMPOUNDS: All 

commercial reagents and solvents were purchased from Alfa Aesar®, Sigma-

Aldrich®, VWR®, or TCI America® and were used as received without further 

purification unless otherwise stated. Reactions were conducted in oven-dried 

glassware under nitrogen atmosphere. Reactions were carried out using 

Thermofisher Isotemp® digital stirring hotplates in dimethicone oil baths. Slow 

cooling crystallizations were performed by heating the sample in a pressure 

vessel to 120 °C in the selected solvent and cooling 1 °C per hour to rt. All solid-

state photophysical and EPR measurements were carried out on triply 

recrystallized samples unless otherwise stated. 1H-NMR and 13C-NMR spectra 

were recorded on Bruker Avance III-HD spectrometers (300-400 MHz). Chemical 

shifts are reported as (δ ppm) with the corresponding integration values 

(integration is not listed for 13C-NMR spectra), while coupling constants (J-

values) are reported in hertz (Hz). Standard abbreviations indicating multiplicity 

were used as follows: s (singlet), br (broad), d (doublet), t (triplet), q (quartet), m 

(multiplet). High-resolution mass spectrum data was recorded using a direct 

exposure probe (DEP) in electron ionization (EI) mode on a Waters QTOF-I 

quadrupole time-of-flight mass spectrometer. PHOTOPHYSICAL PROPERTIES: 

UV-irradiation of all materials was carried out with a Hanovia 450 W medium 
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pressure mercury arc lamp cooled in a quartz immersion well. All IR analysis was 

performed using a Perkin Elmer Spectrum 100 IR Spectrometer. Diffuse 

reflectance spectra were recorded on the solid-state samples using a Perkin 

Elmer Lambda 45 UV/vis spectrometer equipped with UV Winlab software and 

were referenced to Spectralon®. Absorption spectra in solution were recorded on 

a Molecular Devices Spectramax M2.  Quantum yield measurements were 

acquired on an Edinburgh FS5 fluorescence spectrometer equipped with a 150 

W Continuous Wave Xenon Lamp source for excitation (SC-30: Integration 

Sphere module), as well as steady-state emission spectra on solutions (SC-05: 

Standard Cuvette Holder). Solid-state emission analysis was performed using a 

Perkin Elmer LS 55 fluorescence spectrometer equipped with a pulsed high-

energy source for excitation (Front-Face mode). Phosphorescence lifetimes were 

measured using a Mini-τ lifetime spectrometer from Edinburgh Instruments 

equipped with a 365- S12 nm picosecond-pulsed-light-emitting diode (EPLED 

365). EPR STUDIES: EPR experiments were performed using a Bruker EMX plus 

equipped with a Bruker X-band microwave bridgehead and Xenon software (v 1.1b.66). 

The double integration to obtain peak areas was performed in the Xenon software. 

Samples were sealed under N2 and UV-irradiated in Norell Suprasil Quartz EPR tubes. 

X-RAY STRUCTURE DETERMINATION: X-ray intensity data was collected at 100(2) K 

using a Bruker D8 QUEST diffractometer equipped with a PHOTON-100 CMOS area 

detector and an Incoatec microfocus source (Mo Kα radiation, λ = 0.71073 Å). The raw 

area detector data frames were reduced and corrected for absorption effects using the 

Bruker APEX3, SAINT+ and SADABS programs.37,38 Final unit cell parameters were 

determined by least-squares refinement of reflections taken from the data set. The 
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structure was solved by direct methods with SHELXT.39 Subsequent difference Fourier 

calculations and full-matrix least-squares refinement against F
2 were performed with 

SHELXL-201440 using OLEX2.42 Powder X-ray diffraction patterns were recorded on a 

Rigaku Miniflex II diffractometer with accelerating voltage (30 kV) and current (15 mA). 

 

 

Scheme 1.1. Synthesis of 1,3-bis(4-(4-methylbenzoyl)benzyl) urea, 2. Reagents 
and Conditions: 4,4-dimethylbenzophenone was brominated with N-
bromosuccinimide (NBS, 1 eq) and 2,2’- azobis(isobutyronitrile) (AIBN) in 
chloroform to produce 4-(bromomethyl)-4’-methyl benzophenone, bromide 2. The 
resultant bromide was then substituted using triazinanone and NaH in refluxing 
THF to give (((5-(tert-butyl)-2-oxo-1,3,5-triazinane-1,3-
diyl)bis(methylene))bis(4,1-phenylene))bis(p-tolylmethanone), protected 2. The 
product was then deprotected in an acidic diethanol amine aqueous/methanol 
mixture to yield the desired 1,3-bis(4-(4-methylbenzoyl)benzyl)urea (2). 
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4,4’-dimethylbenzophenone (2.01 g, 9.54 mmol) was dissolved in 

chloroform (30 mL). Next, N-bromosuccinimide (NBS, 0.849 g, 4.77 mmol) and 

azobisisobutyronitrile (AIBN, 0.0157 g, 0.0954 mmol) were added and the 

reaction mixture was heated at reflux under N2 for 20 h. The reaction was cooled 

to rt and the organic layer was washed with DI water (3 x 25 mL) to remove 

succinimide byproduct and dried over MgSO4. Silica gel was added to the 

organic layer and the solvent removed under vacuum. The silica adhered crude 

reaction mixture was loaded onto a silica gel column packed with hexanes. The 

product was isolated via column chromatography using a gradient: (pure 

hexanes which were slowly tapered to a 90:10 hexanes: ethyl acetate mixture) as 

the second spot off the column to yield a white solid. (1.379 g, 50%). 1H NMR 

(300 MHz; CD2Cl2) δ 7.75 (2H, d, J = 8.3), 7.70 (2H, d, J = 8.3), 7.52 (2H, d, J = 

8.3), 7.31 (2H, d, J = 8.3), 4.57 (2H, s), 2.44 (3H, s). 13C NMR (400 MHz; CD2Cl2) 

δ 195.36, 143.57, 141.98, 137.83, 134.66, 130.28, 130.10, 128.99, 128.87, 

32.56, 21.37. HRMS (ESI) m/z: [M+H]+ calc’d for [C15H11OBr]+, 288.0150; found, 

288.0145. 
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Figure 1.7. 1H NMR (300 MHz; CD2Cl2) of bromide 2. 

 
 
 
 

 
 
 

 

 

 

 

 

 

Figure 1.8. 13C NMR (400 MHz; CD2Cl2) of bromide 2. 
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To a dry round bottom flask, still-dried THF (75 mL) was added. Next, 

triazinanone (0.334 g, 2.12 mmol) and NaH (60 % suspension in mineral oil, 

0.206 g, 8.48 mmol) were added. The mixture was heated to reflux under N2 

atmosphere for two hours. The suspension was cooled to rt and a solution of 

bromide 2 (1.23 g, 4.24 mmol) in dry THF (15 mL) was added to the stirring 

mixture all at once. The mixture was then heated to reflux for 19 h. Next, the 

reaction mixture was cooled to rt, neutralized with 1N HCl, and diluted with water 

(100 mL). THF was removed under vacuum until an aqueous suspension 

remained. Crude product was extracted with methylene chloride (3 x 100 mL), 

washed with brine (150 mL), and dried with anhydrous MgSO4. The product was 

purified via flash silica gel column chromatography (95:5 

dichloromethane:methanol) and obtained as a white solid (0.265 g, 44%).  1H 

NMR (300 MHz; CD2Cl2) δ 7.77 (4H, d, J = 8.0), 7.71 (4H, d, J = 8.2), 7.49 (4H, 

d, J = 8.0), 7.31 (4H, d, J = 8.0), 4.63 (4H, s), 4.30  (4H, s), 2.44 (6H, s), 1.05 (s, 

9H). HRMS (ESI) m/z: [M+H]+ calculated for [C37H39N3O3]+, 574.3068; found, 

574.3064. 
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Figure 1.9. 1H NMR (300 MHz; CD2Cl2) of protected 2. 

A deprotection solution was prepared by adding diethanol amine (20 mL) 

and deionized water (50 mL) to an Erlenmeyer flask and its pH was adjusted to 

pH 2 via drop-wise addition of 12.1 N HCl. Next, triazinanone protected 2 (0.265 

g, 0.462 mmol) was added to a 1:1 v/v mixture of the deprotection solution (120 

mL) and methanol (120 mL) was refluxed as a suspension for 48 h. The 

precipitate (varying in color from yellow to white) was collected via vacuum 

filtration and was washed with 1N HCl (20 mL), distilled water (3 x 100 mL), and 

dried under vacuum (0.194 g, 88%). 1H NMR (300 MHz; DMSO-d6) δ 7.66 (8H, 

m), 7.43 (4H, d, J = 8.2), 7.36 (4H, d, J = 8.0), 6.68 (4H, t, J = 6.1), 4.35 (4H, d, J 

= 6.0), 2.41(6H, s). 13C NMR (400 MHz; DMSO-d6) δ 195.60, 158.56, 146.40, 
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143.45, 136.16, 134.97, 130.25, 130.12, 129.56, 127.33, 40.62, 21.62. HRMS 

(ESI) m/z: [M+H]+ calculated for [C31H28N2O3]+, 477.2173; found, 477.2173. 

 

Figure 1.10. 1H NMR (300 MHz; DMSO) of 2. 

 

 

Figure 1.11. 13C NMR (400 MHz; DMSO) of 2. 
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Crystallization of 2: Crystals of 2 were obtained by dissolving the sample 

(6 mg/mL) in a hot acetic acid solution (120 °C). The sample was slow cooled at 

1 °C per hour to rt to obtain transparent plates. The crystals (50 mg) were filtered 

using a vacuum filtration apparatus, were washed with DI water (100 mL), and 

dried under vacuum. 

 

Scheme 1.2. Synthesis of 1,3-bis(3-(5-methyl)(benzoyl)benzyl)urea, 3. Reagents 
and Conditions: (3,5-phenyl)boronic acid and iodobenzene were coupled via 
carbonylative Suzuki Coupling43 to yield 3,5-dimethylbenzophenone, dimethylBP. 
The resultant product was brominated with N-bromosuccinimide (NBS, 1 eq) and 
2,2’- azobis(isobutyronitrile) (AIBN) in DCM to produce 3-bromomethyl-5-
methylbenzophenone, bromide 3. The bromide was then substituted using 
triazinanone and NaH in refluxing THF to give 5-(tert-butyl)-2-oxo-1,3,5-
triazinane-1,3-diylbis(3-benzoyl-5-methylphenylmethane), protected 3. The 
product was then deprotected in an acidic diethanol amine aqueous/methanol 
mixture to yield the desired 1,3-bis(3-(5-methyl)(benzoyl)benzyl)urea (3). 
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3,5-dimethylphenylboronic acid (0.149 g, 1.00 mmol), 

palladium(II)bis(triphenyl phosphine) dichloride (0.030 g, 0.040 mmol), and 

potassium carbonate (0.415 g, 3 mmol) were transferred to an oven dried 

Schlenk tube filled with N2. Dry, degassed toluene (10 ml), triethyl amine (0.558 

ml, 4 mmol), and iodobenzene (0.336 ml, 3 mmol) were added to the tube and 

the resulting suspension was sonicated followed by stirring at 100 ˚C. A premixed 

solution of formic acid (0.113 ml, 3 mmol) and acetic anhydride (0.283 ml, 3 

mmol) (stirred under N2 at 30 ˚C for 2 h) was then added to the Schlenk tube 

dropwise. The reaction was allowed to run for two days at 100 ˚C and checked 

via TLC (90:10 hexanes:ethyl acetate), an alizarin stain was used to monitor the 

loss of boronic acid.44 Upon completion, the reaction mixture was filtered, and the 

filtrate was evaporated under reduced pressure. The product was then isolated 

via flash silica gel column chromatography (98:2 Hexanes:EtOAc  96:4 

Hexanes:EtOAc) to yield a white solid (0.188 g, 90%). Spectra matched that as 

previously reported.43 1H NMR (300 MHz; CDCl3) δ 7.81 (2 Η, d, J = 7.1 Hz), 7.59 

(1 H, t, J = 7.3 Hz), 7.48 (2 H, t, J = 7.5 Hz), 7.41 (2 H, s), 7.22 (1 H, s), 2.38 (6 

H, s).  
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Figure 1.12. 1H NMR (300 MHz; CDCl3) of 3,5-dimethyl benzophenone. 

 

 

 

3,5-dimethyl benzophenone (0.750 g, 3.57 mmol), N-bromosuccinimide 

(0.635 g, 3.57 mmol), and azobisisobutyronitrile (0.006 g, 0.036 mmol) were 

transferred to a flask containing 33 mL DCM and was heated at reflux for 24 h 

under N2 (with an initial irradiation period of 2 h with a sun lamp). Upon 

completion, the reaction mixture was filtered, and the filtrate was washed with 

H2O (3 x 50 mL). The combined organic layers were evaporated under reduced 

pressure. The product was then isolated via silica gel column chromatography 
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(100 Hexanes  90:10 Hexanes:EtOAc) to yield a white solid (0.513 g, 50%). 1H 

NMR (300 MHz; CDCl3) δ 7.81 (2 H, d, J = 7.4 Hz), 7.60 (2 H, t, J = 7.2 Hz), 

7.54–7.44 (4 H, m) 4.50 (2 H, s), 2.42 (3 H, s). 13C NMR (300 MHz; CDCl3) δ 

196.42, 139.06, 138.36, 138.11, 137.58, 133.82, 132.70, 130.76, 130.17, 128.50, 

127.89, 32.86, 21.39. HRMS (ESI) m/z: [M+H]+ calculated for [C15H13BrO]+, 

288.0150; found, 288.0156. 

 

 

 

Figure 1.13. 1H NMR (300 MHz; CDCl3) of bromide 3. 



www.manaraa.com

 

 35 

 

Figure 1.14. 13C NMR (300 MHz; CDCl3) of bromide 3. 

 

Triazinanone (0.128 g, 0.814 mmol) and NaH (60% suspension in paraffin 

oil, 0.131 g, 3.28 mmol) were suspended in dry THF (10 mL) and allowed to stir 

at rt for 5 min under N2. Afterwards, a solution of 3-bromomethyl-5-methyl 

benzophenone (0.472 g, 1.63 mmol) in dry THF (10 mL) was added. The 

reaction was then allowed to reflux for 72 h. Upon completion the reaction was 

cooled to rt and neutralized with 1 N HCl. H2O (10 mL) was added and the 
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solution was extracted with DCM (3 x 25 mL), washed with brine (1 x 25 mL), and 

dried over MgSO4. The solvent was then evaporated under reduced pressure, 

and the product was isolated via flash silica gel column chromatography (50:50 

Hexanes:Ethyl Acetate) to yield a sticky solid (0.278 g, 59%). 1H NMR (300 MHz; 

CDCl3) δ 7.80 (4 H, d, J = 7.2 Hz), 7.58 (2 H, t, J = 7.3 Hz), 7.51 – 7.45 (10 H, 

m), 4.57 (4 H, s), 4.22 (4 H, s), 2.39 (6 H, s), 1.00 (9 H, s). 13C NMR (300 MHz; 

CDCl3) δ 196.85, 156.16, 138.64, 138.45, 137.87, 137.68, 133.15, 132.46, 

132.40, 130.05, 129.78, 128.29, 126.76, 61.92, 54.24, 48.75, 28.30, 21.36. 

HRMS (ESI) m/z: [M+H]+ calculated for [C37H39N3O3]+, 574.3064; found, 

574.3057. 

Figure 1.15. 1H NMR (300 MHz; CDCl3) of protected 3. 
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Figure 1.16. 13C NMR (300 MHz; CDCl3) of protected 3. 

 

 

The protected linear analog (0.225 g, 0.392 mmol) was added to 50:40:10 

v/v mixture of methanol, water, and diethanol amine (pH ~2, 60 mL) and heated 

to reflux as a suspension for 72 h. The pH was readjusted to 2 as needed using 

HCl. After cooling to rt, the precipitate was collected via vacuum filtration and 

was washed with 1 N HCl (20 mL), DI water (3 x 100 mL), and was dried under 

vacuum (0.160 g, 85%). 1H NMR (300 MHz; CDCl3) δ 7.78 (4 H, d, J = 7.9 Hz), 

7.58 (2 H, t, J = 6.7 Hz), 7.49-7.44 (8 H, m), 7.34 (2 H, s), 4.72 (2 H, s), 4.44 (4 

N

N

N

OO O
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H, d, J = 5.7 Hz), 2.38 (6 H, s). HRMS (ESI) m/z: [M+H]+ calculated for 

[C31H28N2O3]+, 477.2173; found, 477.2175. 

 

 

 

Figure 1.17. 1H NMR (300 MHz; CDCl3) of 3. 

 

Crystallization of 3: Crystals of 3 were obtained by dissolving the sample 

(1 mg/ 1.6 mL) in dichloromethane and the sample was allowed to slowly 

evaporate to form white needle-like crystals. 
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Scheme 1.3. Synthesis of macrocycle 4. Reagents and Conditions: 3,5-
dimethylbenzophenone (dimethylBP) was brominated with N-bromosuccinimide 
(NBS, 2.5 eq) and 2,2’- azobis(isobutyronitrile) (AIBN) in DCM to produce 3,5-
bis(bromomethyl)benzophenone, bromide 4. The resultant bromide was then 
substituted using triazinanone and NaH in refluxing THF to give protected 4. The 
product was then deprotected in an acidic diethanol amine aqueous/methanol 
mixture to yield the desired macrocycle (4). 

 

 

 

3,5-dimethyl benzophenone (0.584 g, 2.78 mmol), N-bromosuccinimide 

(1.24 g, 6.97 mmol), and azobisisobutyronitrile (0.005 g, 0.028 mmol) were 

suspended in 30 mL DCM and heated at reflux for 72 h under N2 (with an initial 

irradiation period of 2 h with a sun lamp). Upon completion, the reaction mixture 

was filtered, and the filtrate was washed with H2O (3 x 50 mL). The combined 
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organic layers were evaporated under reduced pressure. The product was then 

isolated via silica gel column chromatography (100 Hexanes  90:10 

Hexanes:EtOAc) to yield a white solid (0.521 g, 51%). 1H NMR (300MHz; CDCl3) 

δ 7.81-7.78 (2 H, m), 7.75 (2 H, s), 7.69-7.58 (2H, m), 7.51 (2 H, t, J = 7.5), 4.52 

(4 H, s). 13C NMR (300MHz; CDCl3) δ 195.55, 139.02, 138.92, 137.13, 133.42, 

133.02, 130.50, 130.18, 128.66, 32.05. HRMS (ESI) m/z: [M+H]+ calculated for 

[C15H12Br2O]+, 365.9255; found, 365.9260. 

 

 

 

Figure 1.18. 1H NMR (300 MHz; CDCl3) of bromide 4. 
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Figure 1.19. 13C NMR (300 MHz; CDCl3) of bromide 4. 

 

Triazinanone (0.546 g, 3.47 mmol) and NaH (60% suspension in paraffin 

oil, 0.558 g, 14.0 mmol) were suspended in dry THF (260 mL) and allowed to stir 

at rt for 10 min under N2. Afterwards, a solution of 3,5-bis(bromomethyl) 

benzophenone (1.28 g, 3.47 mmol) in dry THF (70 mL) was added. The reaction 
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was then allowed to reflux for 72 h. The reaction was then cooled to rt and 

neutralized with 1 N HCl. H2O (65 mL) was added and the THF was removed via 

rotary evaporation. The solution was then extracted with DCM (3 x 55 mL), 

washed with brine (100 mL) and dried over MgSO4. The combined organic layers 

were evaporated under reduced pressure. The product was then recrystallized 

via solvent diffusion of MeOH into a saturated CHCl3 solution to yield colorless 

crystals (0.227 g, 18%). 1H NMR (400 MHz; 120°C; DMSO-d6) δ 7.77-7.74 (6 H, 

m), 7.67 (2 H, t, J = 7.6 Hz), 7.58-7.52 (8 H, m), 4.64 (8 H, s), 4.25 (8 H, s), 1.07 

(18 H, s). 13C NMR (400 MHz; 80°C; DMSO-d6) δ 195.29, 154.59, 139.64, 

137.02, 136.72, 132.10, 129.05, 128.92, 128.09, 126.85, 61.68, 53.24, 47.29, 

27.59. 

 

 

Figure 1.20.1H NMR (300 MHz; DMSO) of protected 4. 
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Figure 1.21. 13C NMR (300 MHz; DMSO) of protected 4. 

 

The previous protected macrocycle (0.227 g, 0.312 mmol) was added to 

50:40:10 v/v mixture of methanol, water, and diethanol amine (pH ~2, 160 mL) 

and was refluxed as a suspension for 96 h. The pH was readjusted to 2 as 

needed using HCl. After cooling to rt, the precipitate was collected via vacuum 
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filtration and was washed with 1 N HCl (20 mL), distilled water (3 x 100 mL), and 

was dried under vacuum to yield a white solid (0.160 g, 96%). 1H NMR (300 

MHz; DMSO-d6) δ 7.75 (4 H, d, J = 7.8 Hz), 7.69 (2 H, d, J = 7.3 Hz), 7.62-7.55 

(6 H, m), 7.41 (4 H, s), 6.65 (4 H, s), 4.61 - 4.14 (8 H, br s). 13C NMR (300 MHz; 

DMSO-d6) δ 195.87, 157.93, 142.41, 137.18, 136.51, 132.66, 129.56, 128.59, 

127.91, 126.19, 42.28. 

 

Figure 1.22.1H NMR (300 MHz; DMSO) of 4. 
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Figure 1.23. 13C NMR (300 MHz; DMSO) of 4. 

 

Figure 1.24. X-ray crystal structure and data of protected 2. (A) Molecular 
structure and (B) crystal packing. 
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The compound crystallizes in the orthorhombic system. The pattern of 

systematic absences in the intensity data was consistent with the space groups 

Pmn21 and Pmmn. Structure solution using the intrinsic phasing method SHELXT 

generated a reasonable solution in the non-centrosymmetric group Pmn21. 

Pmn21 was confirmed by further refinement of the obtained model and also with 

the ADDSYM program.45-48 The asymmetric unit consists of half of one 

C37H39N3O3 molecule and a region of disordered solvent molecules. The 

C37H39N3O3 molecule is located on a crystallographic mirror plane. Atoms C19-

C21 of the tert-butyl group are disordered across the mirror plane and were 

refined with half-occupancy. Distances from the three disordered methyl carbons 

to C18 were restrained to be similar. Efforts to model the solvent disorder were 

unsuccessful. Trial modeling attempts suggest a mixture of ethanol and other 

unknown solvents, possible methanol and water. The Squeeze program in 

PLATON was used to account for these species.48,49 The solvent-accessible 

volume was calculated to be 189 Å3 per unit cell (11.5% of the total cell volume), 

containing the equivalent of 52 electrons per unit cell. The scattering contribution 

of this electron density was added to the structure factors computed from the 

known part of the structure during refinement. For comparison, the residual 

factors were R1/wR2 = 0.068/0.163 for the best disorder model, and R1/wR2 = 

0.058/0.127 after applying Squeeze. The reported crystal density and F.W. are 

calculated from the known part of the structure only. All non-hydrogen atoms 

were refined with anisotropic displacement parameters. Hydrogen atoms bonded 

to carbon were placed in geometrically idealized positions and included as riding 
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atoms with (C-H) = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic hydrogen 

atoms, d(C-H) = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methylene hydrogen atoms, 

and d(C-H) = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl hydrogens. The largest 

residual electron density peak in the final difference map is 0.19 e-/Å3, located 

1.80 Å from H20B. 

Crystal data structure and refinement for protected 2.  The .CIF file has been 

deposited CCDC 1855195. 

Empirical formula    C37H39N3O3 

Formula weight    573.71 

Temperature/K    100(2) 

Crystal system    orthorhombic 

Space group     Pmn21 

a/Å      19.855(2) 

b/Å      5.3006(6) 

c/Å      15.6536(18) 

α/°      90 

β/°      90 

γ/°      90 

Volume/Å3     1647.4(3) 

Z      2 

ρcalcg/cm3     1.157 

μ/mm-1     0.074 

F(000)     612.0 
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Crystal size/mm3    0.24 × 0.06 × 0.04 

Radiation     MoKα (λ = 0.71073) 

2Θ range for data collection/° 6.63 to 48.484 

Index ranges           -22 ≤ h ≤ 22, -6 ≤ k ≤ 6, -18 ≤ l ≤ 17 

Reflections collected          11495 

Independent reflections          2726 [Rint=0.0848, Rsigma=0.0638] 

Data/restraints/parameters         2726/4/215 

Goodness-of-fit on F2   1.057 

Final R indexes  [I>=2σ (I)]  R1 = 0.0577, wR2 = 0.1156 

Final R indexes [all data]   R1 = 0.0891, wR2 = 0.1269 

Largest diff. peak/hole / e Å-3  0.19/-0.23 

 

 

Figure 1.25.X-ray crystal structure and data of 2. (A) Molecular structure and (B) 
crystal packing.  

 
The compound crystallizes in the triclinic system. A reasonable, non-

disordered solution was obtained in P1 (No. 1). The asymmetric unit in P1 

consists of two independent C31H28N2O3 molecules, which were numbered 

identically except for label suffixes A or B. All non-hydrogen atoms were refined 
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with anisotropic displacement parameters. Hydrogen atoms were placed in 

geometrically idealized positions and included as riding atoms with d(N-H) = 0.88 

Å and Uiso(H) = 1.2Ueq(N) for urea hydrogen atoms, d(C-H) = 0.95 Å and 

Uiso(H) = 1.2Ueq(C) for aromatic hydrogen atoms, d(C-H) = 0.99 Å and Uiso(H) 

= 1.2Ueq(C) for methylene hydrogen atoms, and d(C-H) = 0.98 Å and Uiso(H) = 

1.5Ueq(C) for methyl hydrogens. The methyl hydrogens were allowed to rotate 

as a rigid group to the orientation of maximum observed electron density. The 

largest residual electron density peak in the final difference map is 1.10 e-/Å3 

located 1.06 Å from H2A. This and the other several largest peaks likely 

represent minor disorder components of the urea group oxygen and nitrogen 

atoms. Such disorder could not be successfully modeled because of the small 

magnitude of the residual density. Because of the absence of heavy atoms in the 

crystal, Friedel opposites were merged during refinement and no attempt made 

to determine the absolute structure. A check of the final structural model with 

ADDSYM showed no missed symmetry elements.44-47 

Crystal data structure and refinement for triply recrystallized 2.  The .CIF file has 

been deposited CCDC 1855192. 

Empirical formula    C31H28N2O3 

Formula weight    476.55 

Temperature/K    100(2) 

Crystal system    triclinic 

Space group     P1 (No. 1) 

a/Å      6.0098(3) 
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b/Å      7.2615(3) 

c/Å      27.0654(11) 

α/°      93.9470(10) 

β/°      90.4050(10) 

γ/°      91.1100(10) 

Volume/Å3     1178.07(9) 

Z      2 

ρcalcg/cm3     1.343 

μ/mm-1     0.087 

F(000)     504.0 

Crystal size/mm3    0.54 × 0.36 × 0.03 

Radiation    MoKα (λ = 0.71073) 

2Θ range for data collection/°  4.526 to 60.128 

Index ranges           -8 ≤ h ≤ 8, -10 ≤ k ≤ 10, -38 ≤ l ≤ 38 

Reflections collected   72515 

Independent reflections           13721 [Rint=0.0447, Rsigma=0.0458] 

Data/restraints/parameters  13721/3/657 

Goodness-of-fit on F2   1.028 

Final R indexes [I>=2σ (I)]   R1 = 0.0560, wR2 = 0.1464 

Final R indexes [all data]   R1 = 0.0868, wR2 = 0.1642 

Largest diff. peak/hole / e Å-3  1.10/-0.31 
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Figure 1.26. X-ray crystal structure and data of 3. (A) Molecular structure and (B) 
crystal packing.  

 

The compound crystallizes in the monoclinic system. The pattern of 

systematic absences in the intensity data positively ruled out a glide plane, 

leaving space groups P21 and P21/m as possibilities. Intensity statistics 

suggested an acentric structure. The solution program XT returned a chemically 

and crystallographically stable solution in P21, which was verified by refinement 

and further with ADDSYM.44-47 The asymmetric unit consists of one molecule. All 

non-hydrogen atoms were refined with anisotropic displacement parameters. 

Hydrogen atoms bonded to carbon were located in Fourier difference maps 

before being placed in geometrically idealized positions and included as riding 

atoms with d(C-H) = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic hydrogen 

atoms, d(C-H) = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methylene hydrogen atoms, 

and d(C-H) = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl hydrogens. The methyl 
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hydrogens were allowed to rotate as a rigid group to the orientation of maximum 

observed electron density. Hydrogen atoms bonded to nitrogen were located and 

refined freely. Because of the absence of heavy atoms in the crystal, Friedel 

opposites were merged during refinement and no attempt made to determine the 

absolute structure. The largest residual electron density peak in the final 

difference map is 0.67 e-/Å3, located 0.58 Å from H21. 

Crystal data structure and refinement for 3.  The .CIF file has been deposited 

CCDC 1855193. 

Empirical formula    C31H28N2O3 

Formula weight    476.55 

Temperature/K    100(2) 

Crystal system    monolinic 

Space group     P21 

a/Å      4.5113(3) 

b/Å      17.3791(10) 

c/Å      15.5995(9) 

α/°      90 

β/°      94.788(3) 

γ/°      90 

Volume/Å3     1218.77(13) 

Z      2 

ρcalc
g/cm3     1.299 

μ/mm-1     0.084 
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F(000)     504.0 

Crystal size/mm3    0.44 × 0.05 × 0.02 

Radiation     MoKα (λ = 0.71073) 

2Θ range for data collection/°  4.688 to 50.112 

Index ranges           -5 ≤ h ≤ 5, -20 ≤ k ≤ 20, -18 ≤ l ≤ 18 

Reflections collected   18116 

Independent reflections   4313 [Rint=0.0791, Rsigma=0.0870] 

Data/restraints/parameters  4313/1/336 

Goodness-of-fit on F2   1.022 

Final R indexes [I>=2σ (I)]   R1 = 0.0602, wR2 = 0.1338 

Final R indexes [all data]   R1 = 0.1058, wR2 = 0.1494 

Largest diff. peak/hole / e Å-3  0.67/-0.20 

 

     

 

 

 

 

 

 

 
Figure 1.27. X-ray crystal structure and data of protected 4, which 
was crystallized via solvent diffusion of MeOH into a saturated 
solution of protected 4 in CHCl3.  
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The compound crystallizes in the monoclinic system. The pattern of 

systematic absences in the intensity data was consistent with the space group 

P21/c, which was verified by structure solution. The asymmetric unit consists of 

half of one C44H50N6O4 cycle and one methanol molecule. The C44H50N6O4 cycle 

is located on a crystallographic inversion center. All non-hydrogen atoms were 

refined with anisotropic displacement parameters. Hydrogen atoms bonded to 

carbon were located in Fourier difference maps before being placed in 

geometrically idealized positions and included as riding atoms with d(C-H) = 0.95 

Å and Uiso(H) = 1.2Ueq(C) for aromatic hydrogen atoms, d(C-H) = 0.99 Å and 

Uiso(H) = 1.2Ueq(C) for methylene hydrogen atoms, and d(C-H) = 0.98 Å and 

Uiso(H) = 1.5Ueq(C) for methyl hydrogens. The methyl hydrogens were allowed 

to rotate as a rigid group to the orientation of maximum observed electron 

density. The hydrogen atom bonded to the methanol oxygen was located in a 

difference map and refined isotropically with a d(O-H) = 0.85(2) Å distance 

restraint. The largest residual electron density peak in the final difference map is 

0.57 e-/Å3, located 0.80 Å from H22C. 

Crystal data structure and refinement for protected 4.  The .CIF file has been deposited 

CCDC 1855194. 

Empirical formula    C46H58N6O6 

Formula weight    790.98 

Temperature/K    100(2) 

Crystal system    monolinic 

Space group     P21/c 
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a/Å      14.4912(6) 

b/Å      9.6735(4) 

c/Å      16.1330(10) 

α/°      90 

β/°      115.788(3) 

γ/°      90 

Volume/Å3     2050.76(15) 

Z      2 

ρcalc
g/cm3     1.281 

μ/mm-1     0.086 

F(000)      848.0 

Crystal size/mm3    0.38 × 0.34 × 0.12 

Radiation     MoKα (λ = 0.71073) 

2Θ range for data collection/°  5.048 to 60.242 

Index ranges      -20 ≤ h ≤ 20, -13 ≤ k ≤ 13, -22 ≤ 1 ≤ 22 

Reflections collected    110998 

Independent reflections   6044 [Rint=0.0372, Rsigma=0.0159] 

Data/restraints/parameters   6044/1/270 

Goodness-of-fit on F2    1.045 

Final R indexes [I>=2σ (I)]   R1 = 0.0468, wR2 = 0.1229 

Final R indexes [all data]   R1 = 0.0590, wR2 = 0.1313 

Largest diff. peak/hole / e Å-3   0.57/-0.32 
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Figure 1.28. PXRD pattern of triply recrystallized 2.  

 

Figure 1.29. PXRD pattern of triply recrystallized 3. 
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Figure 1.30. Absorption and emission spectra of 2 in DMSO 
(0.904 – 1.00 mM). (A) Absorbance spectra, λmax = 335 nm. 
(B) Plot of concentration vs. absorbance used to calculate 
the molar absorptivity (C) emission spectra, λex = 335 nm 
exhibiting a transition at 474 nm.   
 

Figure 1.31. Absorption and emission spectra of 3 in DMSO 
(0.904 – 1.00 mM). (A) Absorbance spectra, λmax = 340 nm. 
(B) Plot of concentration vs. absorbance used to calculate 
the molar absorptivity (C) emission spectra, λex = 355 nm 
exhibiting a transition at 465 nm.   
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Figure 1.32. Absorption and emission spectra of 4 in DMSO 
(0.904 – 1.00 mM). (A) Absorbance spectra, λmax = 340 nm. 
(B) Plot of concentration vs. absorbance used to calculate 
the molar absorptivity (C) emission spectra, λex = 340 nm 
exhibiting a transition at 502 nm.   
 
 

Figure 1.33. Solid-state emission spectra recorded on triply 
recrystallized samples of (A) 2 excited at 380 nm, λmax = 528 
nm,  (B) 3 excited at 374 nm, λmax = 526 nm, and (C) 557 nm 
excitation of the UV-irradiated sample of 2 exhibiting a 
transition at 713 nm. 
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Figure 1.34. Lifetime decay of (A) 2, (B) 3, and (C), 4 in DMSO solutions, 
0.904 mM. 
 
 
 
The lifetime decays were fit with the triexponential function. The amplitude-
weighted average lifetimes were calculated based on the following 
equation: 

< τ𝑎𝑣> =
𝐵1𝜏1+𝐵2𝜏2+𝐵3𝜏3

𝐵1+𝐵2+𝐵3
   (Eq’n 1.1) 

 
 
 
 

Table 1.2. Time constants (τi) and amplitude (Bi) values obtained in 
solution. 
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Figure 1.35. Lifetime decay of triply recrystallized (A) 2 and (B) 3. 

 
 
 

 
Table 1.3. Time constants (τi) and amplitude (Bi) values obtained for the 
triply recrystallized samples 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 1.36. Triply recrystallized 3 under TLC 
lamp, (A) at room temperature (B) after 
freezing in a dry ice/acetone cooling-bath.  
 



www.manaraa.com

 

 61 

Computational Details: 
 

The TDDFT calculations were performed with the ωB97XD50 

exchange-correlation functional and the double zeta polarized basis set 

including diffused functions 6-31+G**.51 Such a long-range corrected 

functional can partially describe excitations with charge transfer character 

and includes dispersion corrections. Natural transition orbitals (NTOs) are 

calculated, together with a charge transfer descriptor and the electron/hole 

population analysis as implemented in the Theodore software package 

(http://theodore-qc.sourceforge.net/), to characterize the nature of such 

electronic transitions.52 The solvent DMSO and its effects on the 

compounds absorption and structural properties were described by the 

implicit solvation model PCM.53 First, the geometry of the linear analogs 

were preoptimized at the DFT ωB97XD/6-31G** level of theory because 

the presence of diffuse functions in the basis set prevented convergence of 

the optimization in solvent. To compute the absorption of the analogs 25 

excited states (15 for 2 in gas phase) were sufficient to reproduce the main 

features of the experimental spectrum. Convoluted spectra were generated 

using Lorentzian line shapes at a full width half maximum of 10 nm for the 

gas phase and 15 nm for solution. The calculations have been performed 

with the Gaussian09 software package.54 
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Figure 1.37. (A) Solid-state experimental absorption spectrum, theoretical 
absorption in the gas phase and corresponding spectral lines of 2. The 
excited states are labeled. NTO pairs corresponding to the (B) S6, (C) S8, 
and  (D) S9 excited states of 2 in the gas phase. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.38. Experimental absorption spectrum 
(solution), theoretical absorption in DMSO and 
corresponding spectral lines of 2. The spectral lines 
were normalized due to high oscillator strength. The S3 

excited state, responsible for the absorption is labeled.  
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Figure 1.39. (A) Experimental absorption spectrum (solid-state), shifted 
(135 nm) theoretical absorption in the gas phase and corresponding 
spectral lines of 3. The S6, S7, and S8 excited states are labeled. NTO pairs 
corresponding to the (B) S6 and (C) S7 excited states of 3 in the gas phase. 
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Figure 1.41. Difference in geometry between the crystal (gas phase, A) 
and the optimized structure in solution (B), for 2. From left to right the 
torsion angles correlate to the angle between the benzenes on the 
benzophenones and the angle between the inner benzophenone benzene 
and urea hydrogen are reported, being the main geometrical difference 
between the two structures.  
 
 

 
Figure 1.42. Geometry difference between (A) the crystal in the gas phase 
and (B) the optimized structure in solution for 2. The main difference is the 
distance change between the highlighted benzene centroids. 
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Figure 1.43. NTO pairs corresponding to the dark S1 state (nπ*) for (A) 2 
and (B) 3 in the gas phase. 
 
 
 
Table 1.4. Optimized geometries used for excited state calculations for 2 and 3 

given in Cartesian coordinates. 

2  3  

Atom X (Å) Y (Å) Z (Å) Atom X (Å) Y (Å) Z (Å) 

O1 0.222 0.756 -0.608 O1 -2.721 -2.882 0.446 
O2 -6.899 2.777 -0.212 O2 0.641 1.066 -1.693 
O3 7.145 -2.438 -0.779 O3 -0.787 2.954 1.327 
N4 -0.937 -1.215 -0.581 N4 -3.058 -2.129 -1.683 
H5 -1.261 -1.966 0.009 H5 -2.598 -1.898 -2.55 
N6 0.565 -0.718 1.100 N6 -1.215 -3.432 -1.186 
H7 0.461 -1.676 1.398 H7 -0.959 -3.296 -2.152 
C8 -0.036 -0.320 -0.067 C8 -2.351 -2.812 -0.726 
C9 -1.769 -0.871 -1.720 C9 -0.136 -3.778 -0.283 

H10 -1.929 -1.772 -2.316 H10 0.173 -4.815 -0.444 
H11 -1.197 -0.165 -2.326 H11 -0.546 -3.711 0.729 
C12 -3.101 -0.259 -1.337 C12 1.064 -2.86 -0.422 
C13 -3.144 0.971 -0.668 C13 0.9 -1.514 -0.726 
H14 -2.212 1.480 -0.439 H14 -0.087 -1.099 -0.892 
C15 -4.358 1.535 -0.313 C15 2.001 -0.667 -0.853 
H16 -4.393 2.496 0.191 C16 3.289 -1.189 -0.704 
C17 -5.560 0.875 -0.596 H17 4.157 -0.557 -0.858 
C18 -5.520 -0.349 -1.268 C18 3.479 -2.535 -0.389 
H19 -6.441 -0.863 -1.522 C19 2.357 -3.354 -0.249 
C20 -4.299 -0.905 -1.638 H20 2.497 -4.408 -0.019 
H21 -4.281 -1.854 -2.167 C21 4.867 -3.092 -0.196 
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C22 -6.843 1.554 -0.237 H22 4.929 -4.131 -0.531 
C23 -8.054 0.743 0.089 H23 5.146 -3.072 0.863 
C24 -9.314 1.311 -0.135 H24 5.61 -2.508 -0.744 
H25 -9.372 2.303 -0.570 C25 1.723 0.76 -1.207 
C26 -10.468 0.615 0.190 C26 2.75 1.827 -0.985 
H27 -11.438 1.064 -0.001 C27 2.742 2.925 -1.853 
C28 -10.401 -0.659 0.769 H28 2.027 2.943 -2.669 
C29 -9.141 -1.210 1.015 C29 3.639 3.97 -1.674 
H30 -9.066 -2.187 1.482 H30 3.635 4.81 -2.361 
C31 -7.980 -0.525 0.674 C31 4.538 3.942 -0.609 
H32 -7.014 -0.971 0.889 H32 5.234 4.762 -0.464 
C33 -11.659 -1.417 1.100 C33 4.538 2.865 0.273 
H34 -12.072 -1.885 0.200 H34 5.226 2.846 1.112 
H35 -12.428 -0.751 1.502 C35 3.654 1.807 0.082 
H36 -11.47 -2.207 1.829 H36 3.651 0.979 0.781 
C37 1.661 0.035 1.658 C37 -4.216 -1.34 -1.326 
H38 1.641 -0.074 2.747 H38 -4.797 -1.916 -0.6 
H39 1.477 1.090 1.438 H39 -4.839 -1.225 -2.218 
C40 3.041 -0.340 1.145 C40 -3.915 0.025 -0.726 
C41 3.224 -1.198 0.061 C41 -2.69 0.294 -0.124 
H42 2.363 -1.640 -0.430 H42 -1.907 -0.449 -0.151 
C43 4.502 -1.504 -0.388 C43 -2.468 1.502 0.534 
H44 4.643 -2.183 -1.222 C44 -3.467 2.479 0.535 
C45 5.625 -0.938 0.220 H45 -3.277 3.423 1.037 
C46 5.443 -0.081 1.312 C46 -4.694 2.244 -0.082 
H47 6.302 0.345 1.821 C47 -4.905 1.006 -0.697 
C48 4.165 0.205 1.771 H48 -5.868 0.805 -1.162 
H49 4.038 0.860 2.628 C49 -5.771 3.299 -0.101 
C50 6.978 -1.334 -0.277 H50 -6.754 2.864 0.101 
C51 8.124 -0.382 -0.163 H51 -5.823 3.782 -1.082 
C52 9.419 -0.906 -0.082 H52 -5.58 4.076 0.643 
H53 9.549 -1.983 -0.067 C53 -1.179 1.798 1.233 
C54 10.517 -0.063 -0.017 C54 -0.376 0.687 1.843 
H55 11.515 -0.485 0.058 C55 0.976 0.936 2.103 
C56 10.359 1.328 -0.054 H56 1.385 1.906 1.841 
C57 9.066 1.846 -0.161 C57 1.78 -0.044 2.667 
H58 8.922 2.921 -0.212 H58 2.83 0.157 2.856 
C59 7.959 1.006 -0.208 C59 1.239 -1.286 2.996 
H60 6.967 1.434 -0.304 H60 1.869 -2.055 3.43 
C61 11.554 2.239 0.041 C61 -0.111 -1.532 2.773 
H62 12.419 1.813 -0.474 H62 -0.544 -2.49 3.043 
H63 11.838 2.391 1.088 C63 -0.919 -0.553 2.202 
H64 11.343 3.221 -0.390 H64 -1.968 -0.769 2.042 
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Table 1.5. Calculated excited states of 2 in gas phase. Energies (nm), oscillator 

strengths (fOSC), charge transfer numbers among fragments, and hole/electron 

differences as calculated by Theodore.52 

State 
Energy 

(nm) 

Oscillator 

Strength 

(fOSC) 

Charge 

Transfer* 

Hole* Electron* 

1 2 3 1 2 3 

S1 333 0.001 0.005 0.000 0.001 0.999 0.000 0.003 0.996 

S2 318 0.001 0.007 0.999 0.001 0.000 0.993 0.007 0.000 

S3 261 0.635 0.009 0.003 0.005 0.997 0.003 0.004 0.998 

S4 252 0.012 0.021 0.000 0.008 0.992 0.000 0.013 0.987 

S5 249 0.018 0.010 0.001 0.004 0.996 0.001 0.006 0.994 

S6 246 0.219 0.056 0.962 0.033 0.007 0.967 0.027 0.007 

S7 240 0.008 0.004 0.997 0.001 0.003 0.995 0.003 0.003 

S8 239 0.155 0.049 0.046 0.037 0.919 0.046 0.014 0.942 

S9 237 0.240 0.060 0.923 0.037 0.040 0.933 0.026 0.041 

S10 224 0.105 0.014 0.996 0.006 0.000 0.993 0.008 0.001 

S11 208 0.145 0.040 0.002 0.027 0.976 0.002 0.014 0.989 

S12 204 0.002 0.035 0.000 0.023 0.975 0.000 0.014 0.984 

S13 201 0.066 0.088 0.922 0.077 0.003 0.971 0.027 0.003 

S14 200 0.217 0.017 0.002 0.013 0.995 0.002 0.004 1.004 

S15 199 0.031 0.446 0.006 0.452 0.541 0.004 0.031 0.963 

 

*Hole and electron were calculated from the following pieces of 2, where 1 = one 

benzophenone unit, 2 = methylene urea unit and 3 = the other benzophenone 

unit. Charge transfer was calculated from this as well.  
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Table 1.6. Calculated excited states of 2 in solution. Energies (nm), oscillator 

strengths (fOSC), charge transfer numbers among fragments, and hole/electron 

differences as calculated by Theodore.52 

State 
Energy 

(nm) 

Oscillator 
Strength 

(fOSC) 

Charge 
Transfer* 

Hole* Electron* 

1 2 3 1 2 3 

S1 312 0.003 0.008 0.998 0.001 0.001 0.992 0.007 0.001 

S2 312 0.003 0.007 0.001 0.001 0.998 0.001 0.006 0.993 

S3 254 1.512 0.041 0.405 0.032 0.562 0.413 0.015 0.571 

S4 253 0.026 0.035 0.563 0.025 0.412 0.570 0.012 0.417 

S5 251 0.041 0.024 0.991 0.009 0.001 0.985 0.015 0.001 

S6 250 0.033 0.012 0.001 0.004 0.996 0.001 0.008 0.992 

S7 248 0.011 0.026 0.991 0.009 0.000 0.983 0.018 0.000 

S8 247 0.008 0.028 0.000 0.010 0.990 0.000 0.018 0.983 

S9 239 0.176 0.044 0.195 0.033 0.774 0.201 0.015 0.786 

S10 239 0.032 0.060 0.755 0.047 0.201 0.779 0.019 0.204 

S11 209 0.013 0.609 0.332 0.656 0.010 0.908 0.089 0.002 

S12 205 0.116 0.014 0.999 0.006 0.001 0.996 0.008 0.001 

S13 204 0.100 0.063 0.002 0.058 0.945 0.001 0.009 0.995 

S14 203 0.018 0.723 0.023 0.731 0.244 0.004 0.046 0.949 

S15 202 0.143 0.061 0.014 0.048 0.942 0.016 0.015 0.973 

S16 202 0.179 0.164 0.827 0.159 0.017 0.959 0.025 0.019 

S17 196 0.359 0.034 0.959 0.020 0.020 0.964 0.015 0.020 

S18 195 0.191 0.021 0.021 0.010 0.968 0.021 0.011 0.967 

S19 194 0.054 0.059 0.960 0.036 0.003 0.971 0.025 0.003 

S20 193 0.026 0.048 0.002 0.029 0.968 0.002 0.021 0.976 

S21 189 0.361 0.038 0.963 0.019 0.018 0.960 0.022 0.017 

S22 188 0.396 0.028 0.022 0.016 0.962 0.023 0.018 0.959 

S23 184 0.070 0.146 0.848 0.145 0.004 0.968 0.026 0.003 

S24 184 0.002 0.148 0.047 0.252 0.699 0.105 0.163 0.730 

S25 184 0.094 0.284 0.124 0.562 0.311 0.260 0.385 0.353 

 

*Hole and electron were calculated from the following pieces of 2, where 1 = one 

benzophenone unit, 2 = methylene urea unit and 3 = the other benzophenone 

unit.  
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Table 1.7. Calculated excited states of 3 in gas phase. Energies (nm), oscillator 

strengths (fOSC), charge transfer numbers among fragments, and hole/electron 

differences as calculated by Theodore.52 

State 
Energy 

(nm) 

Oscillator 

Strength 

(fOSC) 

Charge 

Transfer* 

Hole* Electron* 

1 2 3 1 2 3 

S1 334 0.001 0.004 0.998 0.001 0.001 0.998 0.001 0.001 

S2 329 0.002 0.005 0.000 0.002 0.997 0.001 0.002 0.997 

S3 259 0.051 0.050 0.002 0.036 0.965 0.003 0.015 0.985 

S4 255 0.046 0.043 0.972 0.027 0.003 0.984 0.015 0.004 

S5 244 0.013 0.002 1.001 0.000 0.001 1.000 0.001 0.001 

S6 241 0.212 0.019 0.004 0.009 0.987 0.006 0.006 0.988 

S7 238 0.191 0.019 0.018 0.009 0.973 0.020 0.007 0.973 

S8 237 0.365 0.017 0.973 0.012 0.016 0.979 0.004 0.017 

S9 232 0.066 0.020 0.011 0.010 0.982 0.012 0.008 0.984 

S10 229 0.034 0.031 0.967 0.021 0.015 0.978 0.007 0.017 

S11 203 0.091 0.050 0.971 0.023 0.009 0.966 0.026 0.010 

S12 202 0.028 0.038 0.007 0.021 0.974 0.013 0.013 0.975 

S13 201 0.023 0.883 0.090 0.336 0.573 0.960 0.021 0.018 

S14 199 0.077 0.453 0.499 0.127 0.374 0.919 0.024 0.056 

S15 199 0.002 0.166 0.014 0.119 0.865 0.132 0.023 0.844 

S16 198 0.103 0.483 0.414 0.371 0.215 0.872 0.027 0.101 

S17 197 0.282 0.078 0.755 0.058 0.188 0.774 0.031 0.197 

S18 196 0.115 0.088 0.251 0.068 0.682 0.254 0.020 0.727 

S19 195 0.079 0.080 0.884 0.067 0.049 0.900 0.028 0.072 

S20 193 0.012 0.713 0.031 0.719 0.249 0.076 0.058 0.864 

S21 193 0.054 0.861 0.004 0.065 0.930 0.817 0.020 0.162 

S22 193 0.374 0.202 0.018 0.061 0.923 0.144 0.039 0.820 

S23 191 0.002 0.263 0.101 0.845 0.051 0.236 0.670 0.092 

S24 191 0.035 0.038 0.900 0.088 0.013 0.904 0.079 0.018 

S25 191 0.018 0.114 0.008 0.162 0.828 0.025 0.093 0.881 

 

*Hole and electron were calculated from the following pieces of 3, where 1 = one 

benzophenone unit, 2 = methylene urea unit and 3 = the other benzophenone 

unit. Charge transfer was calculated from this as well.  
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Table 1.8. Calculated excited states of 3 in solution. Energies (nm), oscillator 

strengths (fOSC), charge transfer numbers among fragments, and hole/electron 

differences as calculated by Theodore.52 

State 
Energy 

(nm) 

Oscillator 

Strength 

(fOSC) 

Charge 

Transfer* 

Hole* Electron* 

1 2 3 1 2 3 

S1 318 0.002 0.018 0.975 0.002 0.022 0.966 0.002 0.032 

S2 317 0.001 0.015 0.021 0.004 0.975 0.028 0.002 0.970 

S3 272 0.046 0.104 0.919 0.061 0.021 0.966 0.011 0.025 

S4 266 0.041 0.063 0.009 0.041 0.952 0.015 0.012 0.975 

S5 255 0.050 0.080 0.228 0.010 0.763 0.224 0.005 0.772 

S6 252 0.320 0.057 0.767 0.010 0.223 0.778 0.005 0.217 

S7 251 0.418 0.046 0.014 0.012 0.974 0.021 0.006 0.972 

S8 249 0.043 0.025 0.988 0.004 0.009 0.983 0.001 0.016 

S9 239 0.111 0.116 0.892 0.004 0.105 0.962 0.003 0.037 

S10 238 0.069 0.074 0.026 0.009 0.967 0.049 0.006 0.948 

S11 220 0.012 0.900 0.544 0.078 0.378 0.395 0.006 0.598 

S12 219 0.028 0.842 0.334 0.142 0.523 0.637 0.007 0.354 

S13 217 0.021 0.895 0.117 0.021 0.861 0.833 0.006 0.160 

S14 213 0.013 0.851 0.650 0.256 0.092 0.241 0.011 0.746 

S15 211 0.007 0.851 0.414 0.490 0.095 0.642 0.016 0.340 

S16 208 0.027 0.381 0.111 0.156 0.731 0.374 0.020 0.605 

S17 207 0.015 0.634 0.323 0.419 0.256 0.283 0.018 0.698 

S18 205 0.104 0.555 0.712 0.106 0.180 0.458 0.020 0.521 

S19 205 0.005 0.769 0.131 0.056 0.812 0.711 0.010 0.278 

S20 204 0.020 0.891 0.167 0.067 0.765 0.697 0.007 0.294 

S21 203 0.011 0.554 0.588 0.194 0.217 0.502 0.013 0.484 

S22 202 0.154 0.244 0.764 0.144 0.092 0.845 0.054 0.102 

S23 200 0.127 0.140 0.916 0.024 0.061 0.868 0.006 0.128 

S24 199 0.193 0.153 0.028 0.060 0.912 0.082 0.037 0.880 

S25 199 0.250 0.216 0.192 0.043 0.765 0.149 0.012 0.840 

 

*Hole and electron were calculated from the following pieces of 3, where 1 = one 

benzophenone unit, 2 = methylene urea unit and 3 = the other benzophenone 

unit. Charge transfer was calculated from this as well.  
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Figure 1.44. EPR spectra recorded in solution of (A) 2 and (B) 3 in 
dichloromethane pre and post UV. 
 
 
 
 
 
 
 

 
 
Figure 1.45. EPR spectra of triply recrystallized samples of (A) 2 and (B) 3 
pre and post UV irradiation.  
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Figure 1.47. Dark decay study of the triply recrystallized samples 2 (A) 
EPR spectra post UV irradiation for 1 hour and (B) area of each curve 
plotted against days post irradiation. 
 
 
 

 
Figure 1.46. Radical concentration determination. 
The TEMPO calibration curve () is overlaid with the 
area and determined concentration of 1 (✖ ), 2 (✖ ), 
and 3 (✖ ) after 1 hour of UV-irradiation. 
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Figure 1.48. Dark decay study of the triply recrystallized samples 3 (A) 
EPR spectra post UV irradiation for 1 h and (B) area of each curve plotted 
against hours post irradiation. 
 
 
 
 
 

 
Figure 1.49. Normalized UV/vis spectra of EPR solutions (A) 2 and (B) 3 
post irradiation compared to unirradiated samples in DMSO. 
 
 
 
 
 
 



www.manaraa.com

 

 74 

 
 
Figure 1.50. 1H NMR (300 MHz; DMSO) of 2 crystals post UV irradiation 
showing that no changes were observed after irradiation upon dissolution, 
see figure 1.10. 

 
 

 
Figure 1.51. 1H NMR (300 MHz; CDCl3) of 3 crystals post UV irradiation 
showing that no changes were observed after irradiation upon dissolution, 
see figure 1.17. 
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Figure 1.52. FT-IR on the triply crystallized samples of 2 pre and post UV 
compared to the powder before UV irradiation. 
 
 
 

 
 
Figure 1.53. FT-IR on the triply crystallized samples of 3 pre and post UV. 
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Figure 1.55. Dissolution of UV-irradiated 2 crystals (A) EPR spectra of 2 
crystals recorded 140 days after UV irradiation. (B) Normalized UV/vis 
spectra of the sample in DMSO (25 μM) recorded pre and post UV-
irradiation. The reddish brown crystals form a colorless solution and no 
changes are observed in the absorbance spectrum suggesting that the 
radicals dimerize and/or are scavenged by oxygen upon dissolution.  

 
Figure 1.54. Simulation of the X-band EPR 
spectra recorded at 298 K for the triplet radical 
pair generated by 2 after UV-irradiation using 
the “pepper” package in MATLAB’s EasySpin 
toolbox. The spectrum was fit for two spin ½ 
radicals from the experimental spectra using 
isotropic g-values of 2.007 and 2.003 for 
simplicity.  
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PERSISTENT RADICALS OF SELF-ASSEMBLED 

BENZOPHENONE BIS-UREA MACROCYCLES: 
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2.0 ABSTRACT 

UV-irradiation of a self-assembled benzophenone bis-urea macrocycle 

generates μM amounts of radicals that persist for weeks under ambient 

conditions. High-Field EPR and variable temperature X-band EPR studies 

suggest a resonance stabilized radical pair through H-abstraction. These 

endogenous radicals were applied as a polarizing agent for magic angle spinning 

(MAS) dynamic nuclear polarization (DNP) NMR enhancement. The field-

stepped DNP enhancement profile exhibits a sharp peak with a maximum 

enhancement of εon/off = 4 superimposed on a nearly constant DNP enhancement 

of εon/off  = 2 over a broad field range. This maximum coincides with the high field 

EPR absorption spectrum, consistent with an Overhauser effect mechanism. 

DNP enhancement was observed for both the host and guests, suggesting that 

even low levels of endogenous radicals can facilitate the study of host-guest 

relationships in the solid-state.  

2.1 INTRODUCTION 

Dynamic Nuclear Polarization (DNP) has gained widespread use as 

a means to improve the sensitivity of nuclear magnetic resonance (NMR) 

signals.1-3 In material science, solid-state DNP methods primarily rely on 

exogenous radicals, such as TOTAPOL and AMUPol, which are typically 

introduced by incipient wetness impregnation in mM concentrations.4 

Recent work suggests that high field DNP enhancement may also be 

observed with endogenous radicals.5 This manuscript probes the structure 

of an unusually persistent endogenous radical in bis-urea macrocycle 1 
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and its use as a  polarizing     agent for     DNP     enhancement.     The 

photogenerated radical was first noted when investigating the applications 

of benzophenone bis-urea macrocycle 1 to facilitate selective 

photooxidations.6, 7 The prolonged stability of these endogenous radicals at 

room temperature appears to be a consequence of the columnar assembly 

and crystal packing of the porous organic crystals, where as no evidence of 

radical formation is observed in solution.6 Herein, we probe the structure of 

the radical, estimate its quantity, and evaluate its lifetime by EPR 

spectroscopy.  Finally, we demonstrate that the low levels of endogenous 

radicals in 1 can be applied to hyperpolarize nuclei and enhance the NMR 

signals of both the host and its encapsulated DMSO guest (Figure 2.1). 

Solutions of exogenous stable radicals such as AMUPol, known as  

“DNP juice”, are typically used in mM concentration as polarizing agents for 

solid-state DNP MAS NMR at  ~100 K.1, 4 Under microwave irradiation, the 

exogenous radical transfers its spin polarization to neighbouring protons. 

The large spin polarization of the protons generates a spin polarization 

gradient leading to spin diffusion to nearby protons resulting in a uniform 

proton hyperpolarization throughout the sample.8 The proton spin 

polarization can be transferred to other nuclei, such as 13C, using   a   

Cross-Polarization (CP) pulse sequence.  Recently, Eichorn et al. 

demonstrated DNP in pyruvic    acid   following   low   temperature   UV-

irradiation without any exogenous radical.9,10 Instead, the quasi-stable, 

short-lived UV-induced radicals were shown to afford sizeable DNP enhan- 
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Figure 2.1. A benzophenone bis-urea macrocycle self-assembles from 
DMSO to form host 1 with encapsulated DMSO. A persistent paramagnetic 
species is generated when 1 is UV irradiated at 350 nm with a Hanovia 450 
W medium pressure mercury arc lamp.  This long-lived intermediate was 
used to create DNP enhancement over a broad field range in MAS NMR 
experiments. 

 
cements at low temperatures.9, 10 Larger DNP enhancements are possible 

in solution and have been observed in frozen media under constant 

irradiation (photochemically induced DNP).11 With exogenous radicals, 

optimum concentration is key, as high radical concentration can result in 

excessive paramagnetic relaxation and line broadening. 4, 12 Few studies 

have examined DNP using endogenous radicals in the solid-state or single 

crystals.5, 9, 10  
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Recently, the Shimizu group found columnar supramolecular 

assembly of benzophenone altered its photophysics and lead to the 

formation of stable radicals as an emergent property. Benzophenone is an 

extensively studied chromophore with promising applications ranging from 

photosensitization to genome sequencing and materials chemistry.13 Its 

photochemistry affords a triplet state as a result of fast intersystem 

crossing, which can rapidly undergo H-abstraction to yield a ketyl radical.  

The radical is only observed at low temperatures  (77 K) as a doublet with 

a g value of 2.0061 or as a radical anion via 1-electron reductions.14 

Compound 1 preorganizes two benzophenones within a macrocycle.  

Upon recrystallization from hot DMSO, 1 assembles in needle-like crystals 

through predictable bifurcated urea hydrogen-bonding interactions to afford 

columns (Figure 2.1). 7 The crystals are robust and contain accessible 

channels that are filled with DMSO guests (Figure 2.3b).  DMSO guests 

can be removed by heating and other solvents and substrates can be 

readily loaded in the channels.7 The assembled structure enforces close 

contacts between the benzophenone groups to the methylene H’s on 

neighbouring columns (2.44 – 2.81 Å, Figure 2.9) and orients individual 

benzophenone units close in space. 6 Molecular self-assembly and crystal 

packing in 1 dramatically quenches the phosphorescence lifetime from μs 

to < 1 ns, likely through a non-radiative pathway.6 Mechanistic 

investigations suggest that columnar assembly and packing stabilizes 

some type of photogenerated radical that is stable for weeks in the dark at 
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room temperature. No evidence of radical formation is observed in solution 

where the molecule only exists in monomer form. Our hypothesis is that 

the solid-state structure may facilitate an H-abstraction reaction to form the 

ground state triplet radical pair (RP) shown in Figure 2.2A.  

2.2 RESULTS AND DISCUSSION 

 We probed the structure of the photogenerated radicals of 1 through 

solid–state X-band EPR studies on 1 and on a fully 15N-labeled derivative. 

Both samples exhibited nearly identical broad peaks (g = 2.006, Figures 

2.2B and 2.15). A simulation using parameters for a weakly exchange–

coupled RP (see inset Figure 2.2B and 2.18 for more details and 

parameters) shows that the overall spectral width and main features of the 

experimental spectrum can be accounted for with such a model. This also 

rules out the presence of a photochemically excited (or thermally relaxed) 

molecular triplet state, which would be expected to exhibit much broader 

line widths >1000 G. The similar broad peak observed for the 15N-labeled 

derivative suggests that the triplet RP, drawn in Figure 2.2A, adopts a 

conformation where the 15N hyperfine is less than half of the natural line 

width (~14 G, Figure 2.18), which is reasonable for the benzylic radical 

structure shown.  

The stability of the photoinduced RP was investigated through dark 

decay studies, which were performed by UV irradiating 1 (1 h, rt) and 

recording the EPR spectra over time (0 h – 26 days) while storing the 

sample in the dark. The double integration of the EPR signal is plotted vs.  
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Figure 2.2. (A) Proposed photochemistry of 1, which suggests the known 
photoreaction of benzophenone in the presence of an H donor.  (B) X–
band EPR signal, pre- and post-UV exposure (simulation inset) centered at 
an average g value of 2.006.  (C) Dark-decay study of 1 (5 mg) after 1 h of 
UV irradiation. (D) Radical generation study shows that radical signal 
reaches a maximum intensity after 5h.  
 
time after UV-irradiation in Figure 2.2C. Little to no loss of signal intensity is 

observed, suggesting that once generated, the radicals created in 1 are 

stable for weeks. The small fluctuations in the observed EPR signal 

intensity are likely due to variations in the orientation of the crystalline 

sample with respect to the magnetic field.15 The stability of the 

photogenerated radical is likely a consequence of two effects. First, it is 

probable that once generated, the radicals are unable to terminate as 
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benzophenone is known to do in solution, due to the rigid structure of the 

macrocycles. Second, the proposed photochemistry suggests that the 

radicals are generated in positions that allow resonance stabilization into 

the neighbouring benzene rings resulting in enhanced stabilization of the 

radicals.  

The concentration dependence of the radicals generated by UV-

irradiation of 1 was monitored for exposures from 30 min  to  7 h. Figure 2D 

plots the double integration of the EPR signal vs. irradiation time and 

indicates that the number of radicals reaches a maximum after 5-7 h.  After 

7 h of UV-irradiation, 1 was slightly yellow in colour but still suitable for 

single crystal X-ray diffraction.  No changes were observed in the X-ray 

structure (Figure 2.19) or in the 1H NMR, indicating that 1 is stable and the 

absolute radical concentration is low. The maximum concentration was 

approximated by calibration with standard solutions of TEMPO in benzene 

under identical conditions   (Figure 2.20). 10, 16   The   number of  radicals 

generated by 1 (4.5 mg) is similar to a 5.4 μM stock solution(0.1 mL), which 

is equivalent to a radical forming in ~0.01% of the macrocycles. 

Variable temperature EPR spectra were recorded to resolve 

hyperfine couplings that may not be observed at rt. First, spectra were 

recorded at high temperatures (293, 348 and 398K, Figure 2.21) for 1 and 

the 15N labelled 1. No change in the g-factor or the coupling pattern was 

observed, although the intensity of the signal decreased with   increasing 

temperature. Cooling the sample to 100K did not markedly change the g- 
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Figure 2.3. Steady-state EPR studies of 1. (A) Variable temperature X-
band EPR study of 1 at 293 K (black line), 100 K (red line) and 10 K (blue 
line) (B) CW high-field (240 GHz) EPR absorption curve of 1 at 6 K vs. ppm 
(black line, see ESI for plot in mT). An EasySpin simulation of the high field 
EPR (red line) for two S=1/2 electron spins, one weighted x4. Inset: Plot of 
DNP enhancement vs. ppm observed in a field-step study. 
 
factor, although a slight anisotropy was observed at g = 2.001 (Figure 2.3A, 

red spectra).  Further cooling to 10 K resulted in a change in the EPR 

spectrum, leading to a powder pattern shape with an overall shift in g-factor 

to 2.001 and a slight anisotropy. This can be explained by the orientation-

dependent dipolar contribution of rigid radical pairs, which are often further 

complicated by hyperfine interactions ultimately resulting in line broadening 

due to motional averaging. By cooling the sample, we were able to 

overcome the Boltzmann distribution and rebuild the g-factor matrix leading 

to the significant over population of the lower energy states. The lack of 

hyperfine interactions at low temperatures is consistent with delocalized 

radicals, since hyperfine interactions are described by the probability of 
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finding an electron at the site of a nucleus (i.e. Fermi contact interaction).  

For a delocalized radical the probability is small resulting in an averaged 

effect.17   

The high field EPR shown in Fig. 2.3B was acquired on the NHMFL’s 

240 GHz spectrometer and converted to a ppm scale to assist in our 

interpretation of the field-stepped  DNP data. The solid-state high-field CW 

absorbance EPR spectra of UV-irradiated 1 (25 mg) at 6K shows a broad 

baseline component at g = 2.006 with a sharper transition at g = 2.003. 

Spectral simulations carried out using the EasySpin software are in 

agreement with two S=½ radical species with a sharp isotropic signal at g = 

2.003 as well as a second broad anisotropic signal.  An extrapolated 

simulation to X-band indicates that the lines would overlap at low field, 

consistent with the observations in Figure 2.3. Variable temperature EPR 

and high-field experiments both suggest the assignment as two radicals, 

possibly a delocalized RP.   

 The thermally polarized CP MAS NMR spectra were recorded at a 

spinning speed of 11.3 kHz after 0h, 2h and 4h of UV-irradiation (Figure 

2.4). The 13C NMR peaks are surprisingly sharp for both the host and 

included DMSO. The spectra before and after UV-irradiation are nearly 

identical and no paramagnetic broadening is observed, consistent with the 

low estimated radical concentration and a well-ordered structure.12 The 

THF loaded host crystals, also show a sharp thermally polarized CP MAS 

NMR spectra under similar conditions (Figure 2.29). 
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Solid-state MAS DNP experiments gave a maximum enhancement 

factor εon/off  = 4. The DNP enhancement profile, shown in the inset of 

Figure 2.3B, demonstrates that nearly constant DNP enhancement εon/off  = 

2 is obtained over a broad field range of approximately 120 mT with a 

sharp peak in the enhancement factor of εon/off = 4. DNP enhancement 

profiles are more typically limited to a much smaller    field   range    of   30-

40  mT    compared   to   our experimentally observed 120 mT range for 

1.2,18 Given the broad EPR signal observed by 1, this profile is not 

surprising. Figure 2.5 depicts the optimized DNP CP-MAS NMR spectrum 

at the magnetic field that optimized the DNP enhancement, where εon/off = 4 

was recorded at 112K and a spinning speed of 7.0 kHz. Similar 

enhancement factors were observed for all NMR peaks including the 

encapsulated DMSO. The spinning side bands are a result of the low 

spinning speed required to keep the sample stabilized at the low 

temperature temperatures employed. The non-irradiated sample showed 

no DNP enhancement, which indicates that the enhancement results from 

irradiation of the sample and is not a microwave induced heating artifact 

(Figure 2.30). The constant and positive sign of this field-stepped study 

suggests an Overhauser mechanism.19 Much larger DNP enhancements 

can be observed through traditional impregnation methods; therefore, the 

UV-irradiated sample was impregnated with AMUPol (10 mM, 10-12 μL of 

a 6:3:1 glycerol-d8, D2O,H2O solution) and the DNP CP-MAS NMR 

spectrum acquired using the optimal field conditions for 1 (Figure 2.32). A 
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Figure 2.4. Top: (A) Peak assignment of the benzophenone bis-urea 
macrocycle, which self-assembles to form 1. (B) XRD structure of 1 
depicting the encapsulated DMSO (space fill), the assembly of 1 promotes 
the formation of a stable radical upon UV irradiation. Bottom: CP MAS 
NMR spectra of thermally polarized 1 recorded at a spinning speed of 11.3 
kHz. (I) no UV, (II) 2 h. UV and (III) 4 h. UV.  
 
DNP enhancement of εon/off ~ 6 was observed for all peaks with the 

exception of the glycerol peaks which were enhanced by a factor of εon/off  ~ 

20.  This higher observed enhancement is  likely due to  the dual effect of 

the endogenous and exogenous radicals in this sample. The larger 

observed   enhancement for  glycerol is  expected because the  exogenous 
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Figure 2.5. Optimized DNP CP-MAS NMR enhancement observed at 14.085 T 
under CP DNP MAS NMR conditions demonstrating a total enhancement of εon/off 

= 4. Recorded at 112 K and a spinning speed of 7.0 kHz, microwave on (red line) 
vs. microwave off (black line). *Indicates spinning sidebands. 

 
radical is in more direct contact with glycerol molecules present in the bulk 

DNP juice. It should be noted that impregnating the sample did not yield 

much higher polarization levels while introducing solvent signals. These 

results suggest that in these porous organic crystals, it may be more fruitful 

to use the endogenous radicals formed by 1 to enhance the NMR signals 

of the host:guest materials as opposed to traditional impregnation 

methods. Such DNP enhancement may be observable in other structures. 

2.3 CONCLUSIONS 

We have demonstrated that UV-irradiation of assembled 

benzophenone bis-urea macrocycles can generate low ~μM concentrations 

of long-lived RPs that persist for weeks at room temperature in the dark.  

Labelling experiments ruled out nitrogen-centered radicals. High field EPR 
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data and variable temperature X-band EPR studies suggest the formation 

of two radicals.  Our hypothesis is that the columnar assembled structure 

of 1 facilitates an H-abstraction reaction and significantly stabilizes the 

triplet RP. Stable and persistent organic radicals are rare and typically 

belong to four structural classes.20 These results suggest that additional 

organic radicals may be stabilized by similar supramolecular assembly.  

Thus, we are currently exploring building blocks that contain other known 

sensitizers to investigate if their crystalline solids also afford stable radicals 

upon photolysis. 

  In summary, we have demonstrated that the photo-induced radical 

species generated by 1 can be utilized as a polarizing agent to significantly 

enhance NMR signals for both the host and its encapsulated guest DMSO, 

even though the concentration of endogenous radicals in 1 is orders of 

magnitudes below typical quantities of exogenous agents used for DNP 

NMR. UV-irradiated 1 showed a surprisingly broad DNP enhancement 

profile of over 120 mT, demonstrating that it is not necessary to tune the 

microwave frequency in order to observe DNP enhancement. The 

contribution of the cross-effect mechanism appears to be insignificant, 

since the field-stepped DNP profile exhibits only a single maximum with 

εon/off > 0.  These results suggest that the design and incorporation of low 

levels of endogenous radicals into host frameworks may be broadly applied 

for NMR signal enhancement. Future DNP studies will focus on 
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investigating a variety of guest molecules to see if such systems can be 

widely applied to study host: guest interactions in the solid-state.  

2.4 FUTURE WORK 

 The future work on this project is obvious. It will be fruitful to load 

different guests inside the host and use it to study host-guest relationships 

in the solid-state. Moreover, current DNP polarizing agents are not 

reusable and are difficult to synthesize. So an interesting venture may be 

to take advantage of the insolubility of these materials accompanied by 

their radicals persistence at room temperature to develop resuable and 

regnerable DNP polarizing agents. This venture may require a host 

material that generates higher quantities of radical, but would be of 

extreme interest in the time of DNP. 

2.5 EXPERIMENTAL 

Materials and Instrumentation: All chemicals were purchased from 

Sigma Aldrich, VWR, or TCI Inc. and were used without further purification. 1H-

NMR spectroscopy in solution was performed on a Bruker Avance III HD 300 

NMR spectrometer. UV-irradiation of host 1 was carried out with a Hanovia 450 

W medium pressure mercury arc lamp cooled in a quartz immersion well. 

Thermogravimetric analysis (TGA) was carried out using TA instruments SDT-

Q600 simultaneous DTA/TGA at a rate of 4º/min from 25-180 ºC with 5 min 

isotherms before and after temperature increase. EPR experiments were 

performed using a Bruker EMX plus equipped with a Bruker X-band microwave 

bridgehead and Xenon software (v 1.1b.66). Low temperature EPR experiments 
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were carried out on the same instrument with a cavity cooled with liquid nitrogen 

for the 100 K study and liquid helium for the 10 K study. High temperature EPR 

analysis were performed in collaboration with Dr. Malcolm Forbes group on a 

JEOL USA Inc. JES-RE1X X-band EPR spectrometer equipped with a wide 

bandwidth preamplifier and a low-noise GaAsFET microwave amplifier.  High-

field EPR experiments were performed on a 240 GHz spectrometer at 6K under 

CW conditions. The high-field simulation was carried out using EasySpin and 

MATLAB, ML VERSION.  13C CP MAS NMR and DNP NMR Experiments were 

carried out using a ramped CP-MAS pulse sequence on a 600 MHz Bruker DNP 

spectrometer (3.2 mm sapphire rotor) at the National High Magnetic Field 

Laboratory in Tallahasee, FL.  CCDC structures:  684400 and 1534513. 

EPR Sample Preparation: Neat crystals of 1 were added to a Norell 

quartz EPR tube, purged under Argon gas, sealed under Parafilm, and capped. 

The samples were UV-irradiated at 350 nm at rt with a Hanovia 450 W medium 

pressure mercury arc lamp cooled in a quartz immersion well. EPR signals were 

doubly integrated three times and averaged from the 3305 G to 3370 G range 

using Xenon software (v 1.1b.66).  

MAS DNP NMR Sample Preparation: UV irradiated sample: The 

sample was prepared by UV-irradiating a crystalline sample of 1 (25 mg) 

for 7 hours using a medium pressure Hanovia Hg lamp using Corning glass 

filters to isolate the 366 nm Hg line. After UV irradiation, the sample was 

packed neat into a 3.2 mm sapphire rotor and DNP experiments were 

performed.  Non-irradiated sample: The sample was prepared by packing 
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a neat unirradiated crystalline sample of 1 (25 mg) into a 3.2 mm sapphire 

rotor and DNP experiments were performed. AMUPol impregnated 

sample: The previously packed UV-irradiated host 1 sample (25 mg) was 

unpacked from the sapphire rotor and impregnated with AMUPol (10 mM, 

10-12 μL of a 6:3:1 glycerol-d8, D2O, H2O solution) and the DNP CP-MAS 

NMR spectrum acquired using the optimal field conditions for 1. 

 

 

 
Scheme 2.1. Synthesis of benzophenone bis-urea macrocycle 1. Host 1 was 
synthesized as previously reported.21 Commercial 4,4’-
bis(bromomethyl)benzophenone was brominated with N-bromosuccinimide 
(NBS) using 2,2’-azobis(isobutyronitrile) (AIBN) as an initiator in CCl4 to yield 
4,4’- bis(bromomethyl) benzophenone (dibromide). The brominated c-shaped 
spacer was then cyclized with triazinanone and NaH in refluxing THF to form the 
protected macrocycle. Deprotected in an acidic diethanol amine 
aqueous/methanol mixture afforded the desired macrocycle 1. 
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 MAS DNP NMR Experimental: All 13C NMR spectra were acquired using a 

ramped CP-MAS pulse sequence on a 600 MHz Bruker DNP spectrometer (3.2 

mm sapphire rotor) at the National High Magnetic Field Laboratory.  DNP 

experiments were conducted with a high-powered Cryomagnetics 394 GHz 

gyrotron with an output of 24 mW.  The output was guided via quasi-optics to a 

corrugated waveguide and into the probe head.  Experiments were conducted at 

112 K with spinning speeds at 7.0 kHz. 

Synthesis of 4,4’-bis (bromomethyl) benzophenone: 

 

  

 

 4,4’-bis(bromomethyl) benzophenone (2.0006 g, 9.51 mmol) was dissolved in 

CCl4 (30 mL). Next, N-bromo succinimide (NBS, 4.2301 g, 23.8 mmol) and 

azobisisobutyronitrile (AIBN, 0.0104 g, 0.095 mmol) were added, and the 

reaction mixture was heated at reflux under N2 for 18 h. Excess AIBN (~2 mg) 

and NBS (~30 mg) were added to the reaction mixture, which was stirred for a 

further two hours to push the reaction to completion. The reaction was cooled to 

rt, residual succinimide removed by filtration and washed with DCM. Silica gel 

was added, and the solvent was removed under vacuum and loaded onto a silica 

gel column packed with hexanes. The product was isolated via column 

chromatography (9:1 hexanes: ethyl acetate) as the last spot to yield a white 
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solid that was further recrystallized from ethyl acetate. (2.3570 g, 67%). 1H-NMR: 

(300 MHz; CDCl3) δ=7.78 (4H, d, J=8.1), 7.51(4H, d, J=8.4), 4.54 (4H, s). 

Synthesis of 15N labeled triazinanone protected bis-urea 

benzophenone macrocycle:  

 

To a dry round bottom flask, still-dried THF (400 mL) was added. Next, 

15N labeled triazinanone (0.8578 g, 5.43 mmol) and NaH (60 % suspension 

in mineral oil, 0.8797 g, 21.72 mmol) were added.  The mixture was heated 

to reflux under N2 atmosphere for two hours. The suspension was cooled 

to rt and a solution of 4,4’-bis(bromomethyl)benzophenone (2.0078 g, 5.43 

mmol) in dry THF (100 mL) was added to the stirring mixture all at once. 

The mixture was then heated to reflux for 48 h. Next, the reaction mixture 

was cooled to rt, neutralized with 1N HCl (~10 mL), and diluted with water 

(100 mL). THF was then removed under vacuum until an aqueous 

suspension remained. Crude product was extracted with methylene 

chloride (3 x 100 mL), washed with brine (150 mL), and dried with 

anhydrous Mg2SO4. Product was purified via flash silica gel column 
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chromatography (9:1 ethyl acetate: methanol). Column fractions were left 

to evaporate for 3-7 days and white precipitate was collected and dried 

under vacuum to yield a white solid. (0.140 g, 3.5%). 1H-NMR: 1H-NMR 

(300 MHz, CD2Cl2) δ 7.81 (d, J = 8.1, 8H), 7.46 (d, J = 8.1, 4H), 4.64 (s, 

broad, 8H), 4.34 (s, 8H), 1.07 (s, 18H).  13C-NMR: (75 MHz, CDCl3) δ= 

196.02, 155.69, 143.52, 136.62, 131.00, 127.35, 62.99, 54.35, 49.24, 

28.45. 

 

 

Figure 2.6. 1H-NMR (300 MHz, δ2 - CD2Cl2) of protected 15N labeled host 1. 

 



www.manaraa.com

 

 102 

Preparation of Deprotection Solution: A mixture of diethanol amine (20 

mL) and deionized water (50 mL) was adjusted to pH 2 via drop-wise addition of 

12.1 N HCl. The pH was monitored via litmus paper.  

 

Deprotection of 15N labeled triazinanone protected benzophenone bis-urea 

macrocycle (1):  

 

Triazinanone protected bis-urea benzophenone macrocycle (0.200 g, 

0.275 mmol) was added to 1:1 v/v mixture of the deprotection solution (70 mL) 

and methanol (70 mL) was refluxed as a suspension for 48 h. The precipitate 

(varying in color from yellow to white) was collected via vacuum filtration and was 

washed with 1N HCl (20 mL), distilled water (3 x 100 mL), and dried under 

vacuum (0.135 g, 92%). 1H-NMR (300 MHz, DMSO-d6) δ 7.75 (d, J=8.0, 8H), 

7.43 (d, J=7.9, 8H), 6.82 (d, J= 90.6, 4H), 4.384 (d, J= 5.5, 8H) 13C-NMR (75 

MHz, DMSO-d6) δ 195.36, 158.42, 147.21, 135.74, 130.38, 126.70, 42.76. 
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Figure 2.7. 1H-NMR (300 MHz, δ6-DMSO) of 15N labeled host 1. 

 

 

 

Figure 2.8. 13C-NMR (75 MHz, δ6-DMSO) of 15N labeled host 1. 
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Assembly of benzophenone bis-urea macrocycle to yield host 1: A 

suspension of benzophenone bis-urea macrocycle (0.135 g, 0.275 mmol) in 

DMSO (12 mL) was heated to 130°C and DMSO slowly added to the stirring 

mixture until all the material was dissolved. The colorless solution was hot gravity 

filtered into a pressure tube which was heated at 130°C for 1 hour and was 

slowly cooled to room temperature at a ramp rate of 1°C/hr. The white needle-

like crystalline product was collected via vacuum filtration to yield host 1 (0.120 g, 

92%). The same procedure was carried out on the 15N labeled material.  

 
 

Figure 2.9. XRD of assembled host 1. (A) View along a single column 
highlighting the 4.74 Å bond distance between the neighboring benzophenone 
carbonyl groups.  (B) Crystal packing showing close contacts of the methylene-
bridged hydrogens (2.44 Å) to benzophenone carbonyls, potential sites for H-
abstraction – DMSO guests have been omitted for clarity.   
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Exchange of guests to form host 1•THF: Host 1 (25 mg) was heated to 

180 °C via thermogravimetric analysis at a ramp rate of 4°C/min to remove 

DMSO from host channels. The emptied host was then soaked in neat THF (1 

mL) overnight. The THF loaded crystals were collected via vacuum filtration and 

packed into a 3.2 mm sapphire rotor and investigated under 13C CP MAS NMR 

conditions at room temperature.  

 

 

Figure 2.10. TGA graph with a one step desorption of DMSO from host 1•DMSO 
at 130 °C. Host: guest ratio calculated to be 1:1.   
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IR spectroscopy studies. IR spectroscopy was performed on freshly 

evacuated host 1 crystals (host 1 empty) purified by one recrystallization cycle 

both before and after 30 min UV irradiation. Irradiation was performed as 

previously described using a Rayonet reactor. All IR analysis was performed 

using a Perkin Elmer Spectrum 100 IR Spectrometer.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11. IR comparison of solid host 1 (empty) before (black line) and after 
(red line) 1 h of UV irradiation. 
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UV-vis studies.  UV-vis spectroscopy was performed on freshly 

evacuated host 1 (10 mg) crystals purified by one recrystallization cycle recorded 

after 3 hours UV irradiation. Sample was analyzed using a 4 mm quartz well with 

a quartz cover plate. All UV-vis analysis was performed using a Perkin Elmer 

Lambda 35 UV-vis spectrometer with UV Winlab software. After 3h UV irradiation 

(Figure 2.13, red line) host 1 (empty) displays a nearly identical spectra with the 

initial host. The broad pi-pi* excitation absorption was slightly shifted at λmax = 

304 nm. The more intense n-pi* excitation was identical to that of the before UV-

irradiation of the sample at λmax = 355 nm.  A weak absorption may be present at 

λmax = 588 nm.  In the literature, benzophenone ketyl radicals have been reported 

to have λmax values at 330 and 545 nm.22 These absorption bands are reported to 

shift to longer wavelengths as bulky substituents are attached. This can be seen 

through comparison ketyl radical derivatives such as benzophenone, 

naphthylphenylketone, 2-benzoylbiphenyl, and bis(bisphenyl-2-yl)methanone. 

These analogous possess λmax absorptions relating to ketyl radical at 545, 585, 

585, and 630 nm respectively.22 The benzophenone radical anion has been 

reported at λmax = 700 nm region23 and was not observed in our system.   

UV-vis studies DMSO loaded host 1 after UV irradiation.  UV-vis 

spectroscopy was performed on host 1 (10 mg) crystals purified by one 

recrystallization cycle recorded after 3 hours UV irradiation. Sample was 

analyzed using a 4 mm quartz well with a quartz cover plate. All UV-vis analysis 

was performed using a Perkin Elmer Lambda 35 UV-vis spectrometer with UV 

Winlab software. 
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Figure 2.12. UV-vis comparison of solid host 1 (empty) before (black line) and 

after (red line) 3 h UV irradiation. UV irradiated host 1 shows similar λmax values 

at 304 and 355 nm.   The ketyl radical or other radical species is expected at λmax 

at 588 nm.  
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Figure 2.13. UV-vis comparison of solid host 1 with DMSO loaded 

in the channels after UV irradiation for 3 hours. UV irradiated host 1 

shows similar λmax values at 302 and 352 nm.   The ketyl radical or 

other radical species is expected at λmax at 581 nm.  
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Fluorescence studies. Fluorescence spectroscopy was performed on 

freshly evacuated host 1 (10 mg) crystals purified by one recrystallization cycle 

both before and after 30 min UV irradiation. Sample was analyzed using a 4 mm 

quartz well with a quartz cover plate. Solid-state fluorescence analysis was 

performed using a Perkin Elmer LS 55 fluorescence spectrometer with FL Winlab 

software with integrating sphere. Sample was analyzed over 375 – 525 nm range 

using an excitation wavelength of λex = 355 nm. 

 
 
 

 

 

 

 

 

 

 

 

EPR comparison of 15N host 1 vs. unlabeled host 1:  Freshly 

evacuated crystals of host 1 and 15N host 1 (5 mg) were loaded into separate 

EPR tubes and purged with Argon for 5 min. EPR analysis was then performed 

on both samples before UV exposure. As expected, neither sample yielded a 

positive EPR signal upon ambient light exposure. Crystals were then UV 

Figure 2.14. Emission spectra comparison of solid host 1 (empty) 
before (black line) and after (red line) UV irradiation. Scan range was 
375 to 525 nm using λex=355 nm as the excitation wavelength. 
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irradiated for 30 min using a Rayonet reactor equipped with 16 x 120 W lamps 

(350 nm) followed by EPR analysis. The very small changes observed upon 15N 

substitution indicate that the contribution to spin density on the N is smaller than 

expected, which may reflect an orientation effect in the hyperfine tensor for the 

benzylic-type radical. The signal is also being broadened by spectral exchange 

and has a rather large natural line width, both of which may mask small changes 

in hyperfine splitting patterns due to isotopic substitution. 

 

 

 

 

 

 

 

 

 

 

 

 

EPR after multiple recrystallizations: To test that the photoinduced 

radical was not a result of impurity host 1 was subjected to three recrystallization 

cycles and EPR spectra were recorded. Signal was still observed after 3 

Figure 2.15. (a) Host 1 and its 15N labeled analogue 

samples prepared under Ar (g) and (b) Comparison of 

their EPR spectra after 30 min UV irradiation.   
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recrystallization cycles indicating that the radical is not a result of impurity.  

 
 

EPR of assembled vs. unassembled 1: Precipitate: 1 collected directly 

from the deprotection step was collected via Millipore vacuum filtration and 

washed with H2O (25mL) and CH2Cl2 (25 mL). Sample was left to dry on the 

vacuum filtration apparatus for 30 min, and then the purity was verified via 1H-

NMR spectroscopy. The precipitated host 1 (5 mg) was loaded into an EPR 

sample tube and purged with argon for 5 min then EPR spectra was recorded. 

Sample was then transferred to the Rayonet UV reactor and irradiated for 30 min 

and the EPR spectra was again recorded. Solution: Freshly recrystallized host 1 

crystals (1 mg) were dissolved in DMSO (1 mL) by heating with a heat gun. 

Solution was transferred into an EPR tube and purged with argon gas (99.99% 

Figure 2.16.  Host 1 (empty) EPR analysis before and after 30 min UV 
irradiation under Argon atmosphere after the (1) 1st , (2) 2nd, and (3) 
3rd recrystallization cycles. 
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purity) for 5 min and the EPR was recorded. Sample was then irradiated in a 

Rayonet UV reactor equipped with 3500 Å bulbs for 30 min and the EPR was 

again recorded. Assembled material: Host 1 crystals (5 mg), purified via 3x 

recrystallization cycles, were collected via Millipore vacuum filtration. Sample 

was then washed with CH2Cl2 (25 mL) and left to pull on the vacuum filtration 

apparatus for 30 min. Crystals were then loaded into an EPR tube, then purged 

with Argon for 5 min, and the EPR spectra was recorded. Sample was then 

transferred to the Rayonet UV reactor and irradiated for 30 min and the EPR 

spectra were again recorded. The lack of changes to the EPR signal when 

DMSO is loaded in the channels shows that the DMSO guest does not quench 

the radical. Radical formation does not appear to be altered or impacted by 

guests being loaded in the host channels, as observed by Geer in EPR samples 

of host 1cumene and host 12-methyl-2-butene.21 

 

 

 

 

  

 

 

 

 

Figure 2.17. Comparison of crystallized host 1, host 

1 precipitate from deprotection solution, and host 1 

in DMSO in solution after 30 min UV irradiation. 
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X-band EPR Simulations: 

 

 

 

X-band EPR Parameters: 

 

4 H ortho   = 5.0 G 

4 H meta   = 2.0 G 

 

1 N = 6.0 G 

1 H = 5.0 G 

1 H = 3.0 G 

4 H = 4.0 G 

 

Other parameters: average g-factor = 2.0055, spin exchange interaction J = 3 G, 

natural line width = 14 G. 

For simplicity, the simulation uses isotropic g-factors and hyperfine 

interactions. The overall spectral width and line shape support the existence of a 

Figure 2.18. Computer simulation of the X-band 

EPR spectrum in Figure 2B. Total sweep width is 

100 G.  Other parameters given below. 
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weakly coupled radical pair rather than a molecular triplet state. Minor 

discrepancies in the fit almost certainly arise from hyperfine and g–factor 

anisotropies that are unaccounted for in the model. Also, it is not well established 

if the observed spin-spin coupling is of the exchange or dipole-dipole interaction 

type. 

 
 
 
Figure 2.19. Views from the crystal structure of host 1 after 7 hours of UV 
irradiation.  (A) View along a single column, DMSO is loaded in the channels. (B) 
View of crystal packing.  
 

XRD of host 1 after 7 hours UV-irradiation: Crystal data structure and 

refinement of [C32H28N4O4, C2H6OS]. The .cif file has been deposited CCDC 

1534513. 

Empirical Formula    C32H28N4O4, C2H6OS 

Temperature (K)    100 (2) 
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Formula Weight    532.60, 78.13 

Space group     P 21 

a/Å      9.4229 (7) 

b/Å      23.0807 (15) 

c/Å      13.2465 (9) 

Volume/Å     2878.95 

Z, Z’      4,0 

Density (calculated)   1.322 Mg/m3 

Absorption coefficient   0.090 

F(000)     1288.0 

Crystal size/mm3    0.44 x 0.08 x 0.06 

Theta range for data collection  4.322 to 55.146 

Index ranges         12≤h≤12,-30≤k≤ 30,-17≤l≤ 17 

Reflections collected   83073 

Independent reflections  13329[Rint=0.0339,Rsigma=0.0240] 

Completeness to theta   100.0% 

Absorption correction   None 

Refinement method   Full matrix least-squares on F2 

Data / restraints / parameters  13329/13/856 

Goodness-of-fit on F2   1.065 

Final R indices [I>2sigma(I)]  R1 = 0.0350, wR2 = 0.0864 

R indexes (all data)    R1 = 0.0420, wR2 = 0.0910 

Largest diff. peak and hole  0.26/-0.42 
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Dark Decay Experiment: Crystals of host 1 (12.5 mg) were added to a 

Norell quartz EPR tube, purged under Argon gas, and sealed under Parafilm. 

The sample was UV-irradiated at 350 nm for 1 h at rt. X-band EPR experiments 

were carried out for nearly 26 days after UV-irradiation, the sample was stored in 

the dark in between scans.  Experiments were carried out under identical 

parameters at a microwave power of 1.589 dB with a modulation amplitude of 2. 

EPR signal was doubly integrated three times and averaged from the 3305 G to 

3370 G range using Xenon software (v 1.1b.66). 

UV-dependence Study: Crystals of host 1 (4.5 mg) were added to a 

Norell quartz EPR tube, purged under Argon gas, and sealed under Parafilm. 

The sample was UV-irradiated at 350 nm for 1 h at rt.  X-band EPR experiments 

were carried at various time intervals during the UV-irradiation until radical 

generation plateaued.  Experiments were carried out under identical parameters 

at a microwave power of 1.589 dB and 1.0 G modulation amplitude. EPR signal 

was doubly integrated three times and averaged from the 3305 G to 3370 G 

range using Xenon software (v 1.1b.66).  

Calibration of TEMPO in benzene: A stock solution (3.2 mM) of TEMPO 

in benzene was prepared by dissolving TEMPO (0.005 mg) in benzene (10 mL). 

The solution was diluted to known concentrations and 0.1 mL aliquots were used 

for X-band EPR studies using identical parameters. The EPR samples were 

recorded in the same Norell EPR tube, which was washed and flame dried in 

between samples. The three line EPR spectra was doubly integrated three times 
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and averaged from the 3305 G to 3370 G range using Xenon software (v 

1.1b.66). 

 

Figure 2.20. Calibration of EPR spectrometer using TEMPO in benzene. Signal 
intensities were doubly integrated in order to obtain the area under the 
absorption curve.   
 

 

Calculation for approximate radical concentration:   

 Area under the curve (after 7 hours irradiation): 50.034629 
 
 Equation from TEMPO calibration: y = 7.5171x – 9.2153 
 

 Where,y = 7.5171x-9.2153   

   x = concentration 
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y = area under the curve = 50.034629 

    50.034629 = 7.5171x – 9.2153 

  40.819329 = 7.5171x 

    x = 5.43 x 10 -06 M = 5.4 μM radical concentration 

Percentage of radical generated by 1 calculation: From the concentration we 

can find the mols of TEMPO.  

   
M = mol = 5.43 x 10 -06 M = mols of TEMPO 

           L                    0.0001 L 
 
                     mols of TEMPO = 5.43 x 10 -06 M (0.0001 L) 
 

  = 5.43 x 10 -10 mols of TEMPO× 10-06M =
mol of TEMPO

0.0001L
             

 
From there we can find the approximate number of radicals that were generated. 

This is because for every one molecule of TEMPO there is one radical in the 

system.  

1 TEMPO molecule = 1 Radical 

   5.43 x 10 -10 mols of radicals generated by 1  
 

For 4.5 mg host 1:  
 
0.0045 g   x   1 mol  =  7.37 x 10 -06 mols host 1 
    1  610.34 g 

 

Now we can calculate the percentage of radical generated. To do that, we can 

divide the number of radicals of generated by UV irradiation by the number host 

molecules present.  

5.43 x 10 -10 mols radicals  
7.37 x 10 -06  mols host  x 100 = 0.007 = ~0.01 %  radical/host 
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Variable temperature studies: Evacuated host 1 crystals (5 mg), purified 

via 3x recrystallization cycles, and evacuated 15N labeled host 1 crystals (5 mg) 

were UV irradiated for 30 min. EPR spectra was recorded at 20, 50, and 100ºC. 

All variable temperature EPR analysis were performed on a JEOL USA Inc. JES-

RE1X X-band EPR spectrometer equipped with a wide bandwidth preamplifier 

and a low-noise GaAsFET microwave amplifier.   

 

 
 
 
Figure 2.21. Variable Temperature EPR at 20, 50, and 100 ºC for host 1 (empty) 
and 15N labeled host 1.   
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15N labeled 1 EPR recorded at 10K. EPR experiments were performed 

using a Bruker EMX plus equipped with a Bruker X-band microwave bridgehead 

and Xenon software (v 1.1b.66). Low temperature EPR experiments were carried 

out on the same instrument with a cavity cooled with liquid helium spectra was 

recorded at 10 K on 7.6 mg of 15N labeled host crystals.  

 
Figure 2.22. Low temperature EPR recorded at 10 K on 15N labeled host 1 
versus unlabeled host.   
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High Field EPR: High-field EPR experiments were performed on a 240 

GHz spectrometer under CW conditions. Host 1 after 7 hours of UV irradiation 

(25 mg) was crushed and placed into the sample well, spectra was recorded at 

6K. Easy Spin simulation was performed by John Tokarski, details and 

parameters given in Table 2.1.    

Figure 2.23. CW high-field (240 GHz) EPR absorption curve of 1 at 6 K vs. ppm.  
 

 



www.manaraa.com

 

 122 

High Field EPR Simulations: The high field EPR data was simulated 

using the MATLAB EasySpin toolbox. All simulations were performed using the 

“pepper” package at 6 K and 240 GHz. No field ordering was used in the 

simulations. Three separate simulations were performed: a single radical species 

with S=1/2, two radicals with S=1/2 for both species, and a single species with 

S=1. In the first case, the EPR data was not able to reproduce the smaller, low-

field peaks, even by varying the g-anisotropy for one radical. The triplet state was 

able to reproduce the low-field peaks (D= -380 MHz, E= -10 MHz), but the 

intensities were inconsistent with respect to the acquired experimental data. 

However, it was the system with two spin ½ radicals that was able to properly fit 

the observed data. 

MAS DNP NMR Conditions: All 13C NMR spectra were acquired using a 

ramped CP-MAS pulse sequence on a 600 MHz Bruker DNP spectrometer (3.2 

mm sapphire rotor) at the National High Magnetic Field Laboratory.  DNP 

experiments were conducted with a high-powered Cryomagnetics 394 GHz 

gyrotron with an output of 24 mW.  The output was guided via quasi-optics to a 

corrugated waveguide and into the probe head.  Experiments were conducted at 

112 K with spinning speeds at 7.0 kHz. The sample was prepared by UV-

irradiating a crystalline sample of 1 (25 mg) for 7 hours using a medium pressure 

Hanovia Hg lamp using Corning glass filters to isolate the 366 nm Hg line in Dr. 

Jack Saltiel’s lab at Florida State University under the supervision of Dr. Shipra 

Gupta. After UV irradiation, the sample was packed into a 3.2 mm sapphire rotor 

and DNP experiments were performed. For comparison, host 1 was also 



www.manaraa.com

 

 123 

impregnated with AMUpol using identical conditions and at its optimal field 

strength.  DNP experiments were also carried out on an unirradiated sample to 

ensure the enhancement observed was not a result of heating.  

Build-up curve: The signal intensity was investigated as a function of 

irradiation time and plotted in Figure 2.25.  The data fits to a bi-exponential 

function as the enhanced signal is comprised of a slow and fast component (6.7 

s and 24.2 s).  At shorter times, the enhancement is larger which allows the use 

of a shorter recycle delay and ultimately a shorter experimental time to achieve a 

quality signal to noise ratio.  

MAS DNP NMR Field Sweep:  A Lakeshore cryogenics power supply 

system was used to ramp the field of the magnet. Data for the field sweep was 

acquired with and without microwaves to analyze the enhancement as a function 

of field strength.   Enhancement, ε was calculated as 

 

    ε = Son 

            Soff 

 

 

Where, S denotes the signal intensities with and without the microwaves.   

The field sweep data does not represent the typical solid effect, cross effect 

profiles.  Furthermore, the enhancement seems to be constant, except for a 

slight maxima around 14.09 T. Therefore, due to the extremely broad 

enhancement, it could be postulated that the enhancement derives from the 

Overhauser effect.   
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Conversion from Tesla to ppm for Figure 2.3B. Due to the fact that the 

DNP field step study and High-field EPR were recorded on different magnetic 

fields (14.1 and 8.56 T respectively) we had to convert the two spectra to ppm to 

overlay them. PPM conversion was achieved in excel and performed on the field-

stepped DNP study (Figure 2.26) and on the high-field EPR.  

   Field – Bmax  = B0 

(B0 / B max) x 10 06 = ppm scale 

 

 

Figure 2.24. Simulation of the CW high field (240 GHz) EPR spectra recorded at 

6K for a single radical species with S=1/2 (blue line); single radical species with 

S=1 (green line); two S=1/2 radicals (red line) with respect to the experimental 

data (black line) demonstrating that the data is consistent with triplet radical pair 

(two S=1/2 radicals).  
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Table 2.1. The g-values used to simulate the spectra which is consistent with a 
biradical system with S=1/2 for both species.  
 

 
Isotropic 

g-value 

PAS 

Components 

Weighting 

Factor 

Radical 1 2.0030 [2.0027, 2.0027, 2.00365] 4 

Radical 2 2.0061 [2.0027, 2.0056, 2.0100] 1 

 

 

 

    

 

   Figure 2.25. DNP signal as a function of irradiation time of the UV-irradiated 1. 
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Figure 2.26. 13C-MAS NMR field dependence of the DNP enhancement of UV-
irradiated 1 (7 h, rt) as a function of magnetic field.  
 
  

 

Figure 2.27. Thermally polarized 13C-MAS NMR of UV-irradiated (2h, rt) host 1 
recorded at a spinning speed of 11.3 kHz at room temperature. *indicates 
spinning side bands.  
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Figure 2.28. (A) Thermally polarized 13C-MAS NMR of UV-irradiated (2h, rt) host 

1THF recorded at a spinning speed of 11.3 kHz at room temperature. *Indicates 

spinning sidebands. (B) PXRD of of UV-irradiated (2h, rt) host 1THF. 
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Figure 2.29. Complete CP MAS NMR spectra of thermally polarized 1 recorded 

at a spinning speed of 11.3 kHz. (I) no UV, (II) 2 h. UV and (III) 4 h. UV. 

*indicates spinning sidebands. 

Figure 2.30. DNP CP-MAS NMR on unirradiated host 1, performed to ensure the 
broad enhancement factor of 2 was not a result of heating. Enhancement was 
not observed on host 1 before UV-irradiation.  Spectra performed at 14.085 T 
under exact CP DNP MAS NMR conditions with microwave on (red line) vs. 
microwave off (black line). Recorded at 112 K and a spinning speed of 7.0 kHz, 
microwave on (red line) vs. microwave off (black line).  
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Figure 2.31. Optimized DNP CP-MAS NMR enhancement observed at 14.085 T 

under CP DNP MAS NMR conditions demonstrating a total enhancement of εDNP 

= 4. Recorded at 112 K and a spinning speed of 7.0 kHz, microwave on (red line) 

vs. microwave off (black line). *Indicates spinning sidebands. 

     

Figure 2.32. DNP CP-MAS NMR enhancement observed at 

14.085 T under CP DNP MAS NMR conditions demonstrating 

on an AMUPol doped sample, demonstrating an enhancement 

of ~6. Recorded at 112 K and a spinning speed of 7.0 kHz, 

microwave on (red line) vs. microwave off (black line). 

*Indicates spinning sidebands. 
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13C CP MAS DNP NMR AMUPol Impregnation: The UV-irradiated host 1 

(25 mg) was impregnated with AMUPol (10 mM, 10-12 μL of a 6:3:1 glycerol-d8, 

D2O, H2O solution) and the DNP CP-MAS NMR spectrum acquired using the 

optimal field conditions for 1. 
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CHAPTER 3 

SYNERGISTIC EFFECTS OF HYDROGEN AND HALOGEN 

BONDING IN CO-CRYSTALS OF DIPYRIDYLUREAS AND 

DIIODOTETRAFLUOROBENZENE†
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publisher. 
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3.0 ABSTRACT 

Herein, we investigate co-crystallization of three linear co-formers that 

contain urea and pyridyl groups with three regioisomers of 

diiodotetrafluorobenzene (DITFB) to afford eleven co-crystals.  The linear o-, m-, 

and p- dipyridylureas vary distance and geometry between the urea carbonyl 

oxygen and two pyridyl nitrogen acceptors, while the donors consist of urea NH 

groups and the activated halides in DITFB.  Electrostatic potential calculations 

suggest that the o-dipyridylurea co-former presents two significantly different 

acceptors. In comparison, the acceptors in the m- and p-dipyridylurea co-formers 

display electrostatic potentials within 5-6 kJ/mol and should be competitive, 

potentially leading to altered assembly motifs. Overall, ten of the co-crystals 

consistently display the urea assembly motif as the best acceptor/donor pair. 

Seven structures were obtained as the predicted 1:1 ratio with halogen bonding 

interactions linking ditopic halogen bond donors and the pyridyl units through 

N···I interactions ranging from 78.4-83.1% of the van der Waals radii. Modified 

structures were more likely when there was a structural mismatch with the 

geometrically challenging o-DITFB donor and m- or p-dipyridylurea co-former.  

The majority of the co-crystal structures (10/11) demonstrated fully satisfied 

hydrogen and halogen bonding interactions suggesting that these synthons can 

be used synergistically to generate complex solid-state structures.   

3.1 INTRODUCTION 

Co-crystallization is a technique that incorporates non-covalent 

interactions into the design of functional crystalline solids made up of two or more 
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molecular components without compromising each co-formers’ biological 

activity.1-3 Co-crystals often give rise to synergistic effects, modulating 

physiochemical properties such as solubility, stability, and melting point.  

Therefore, they have applications in pharmaceuticals, energetic materials, and in 

templating solid-state photoreactions.3-8 It is challenging to determine the precise 

rules for combining multiple individual supramolecular interactions to rationally 

predict solid-state structures, as complex intermolecular interactions act both 

competitively and collectively to drive crystallization.  When designing molecular 

building blocks that self-assemble in high fidelity, one typically considers the 

strength, reversibility and directionality of the interactions. Hydrogen and halogen 

bond interactions are often selected to guide assembly as they are directional, 

although both are relatively weak and reversible.9-10 Both involve an acceptor that 

is nucleophilic in nature, having at least one lone pair of electrons. They differ by 

the type of electrophilic donor present in the interaction; group XVII halogen 

atoms vs. a hydrogen atom, typically on or near an electronegative group.9-10 

A pioneer in the field, Margaret Etter defined a broad set of rules for solid-

state hydrogen bonding preferences (Etter’s Rules) from investigation of co-

crystals and demonstrated the importance of electrostatic potentials when 

predicting the structural outcome of co-crystals.11-13. Others showed that these 

simple calculations can be used to predict the structural outcome of 

multicomponent crystallizations with the best hydrogen bond acceptor interacting 

preferentially with the best donor.14-17 Electrostatic potential surface maps can be 

used to determine the most negative electrostatic potential that general marks 
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the best acceptor and the most positive values that indicate the best donor.  

These potentials also correlate with beta values, which can account for the 

competition of solvent molecules.17 Our interest in examining the synergistic 

assembly of co-crystals originates from our work on pyridyl bis-urea macrocycles 

(Figure 3.1a), which demonstrate an unusual hydrogen bond assembly pattern, 

as well as a propensity to form co-crystals.18-21 In the pyridyl bis-urea 

macrocycles, the urea oxygen is the better acceptor (  = 8.3 for urea oxygen vs. 

7.0 for pyridine nitrogen); however, the close proximity of these acceptors 

modulated the expected hydrogen bonding motif.  The macrocycles form robust 

1-dimensional pillars through two different hydrogen bonds (N-H···N and N-

H···O) where the urea NH’s interact with both the urea carbonyl oxygen and the 

pyridine nitrogen.18 This leaves two oxygen lone pairs unsatisfied per macrocycle 

that can be employed orthogonally to organize DITFBs through C=O···I halogen   

 
 

Figure 3.1. Dipyridylureas contain hydrogen bond donors and two potential 
acceptors.  (a) The pyridyl bis-urea macrocycles form robust 1-dimensional 
pillars, the black color marks the dipyridylurea structural analogue studied in this 
manuscript. (b) Hydrogen and halogen bond formation drives the co-
crystallization of the pyridyl bis-urea macrocycle and DITFBs. (c) Dipyridylurea 
co-formers that present both donors and acceptors and the DITFBs investigated 
in this manuscript 
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bonding interactions (Figure 3.1b).20 In this example, proximity, electrostatics and 

geometric   constraints   imposed   by  the   macrocycle may   be   individually  or 

collectively responsible for the altered supramolecular pattern.  Also, the 

presence of competing acceptors with similar electrostatic potentials can further 

complicate these issues.21 

This manuscript explores the assembly of linear dipyridylurea co-formers 

that are closely related to the pyridyl bis-urea macrocycle with 

diidotetrafluorobenzenes (DITFBs).  These co-formers present competitive 

donors and acceptors for hydrogen and halogen bond formation.  Specifically, we 

investigated the co-crystallization of three linear dipyridylureas with o-, m-, and p-

DITFB activated ditopic halogen bond donors (Figure 3.1c). The simple o-

dipyridylurea is structurally most similar to the macrocycle; where as the m-

dipyridylurea and p-dipyridylurea vary the distance and geometry between the 

pyridyls and the urea group.  Reger et al. incorporated these dipyridylurea co-

formers into the design and synthesis of europium and terbium metal complexes 

where they were found to exhibit luminescent properties following 

complexation.22 Others also employed these ligands in metallo-supramolecular 

complexes and to assemble diacetylenes.23-26 Similarly, the ditopic halogen bond 

donors, DITFBs, were selected as they present the iodine atoms at different 

distances and spatial dispositions. These systems were used to probe the 

relationship between hydrogen and halogen bonding moieties, to examine how 

their complex geometry governs supramolecular architecture, and to understand 
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how the presence of halogen bond donors will complement and/or disrupt the 

urea-urea hydrogen-bonding motif.  

3.2. RESULTS AND DISCUSSION 

The urea-centered co-formers were used as previously synthesized.22 

NMR, IR, and high-resolution mass spectrometry was recorded before co-crystal 

screening (Figures 3.8-3.16). The halogen bond donors and organic solvents 

were ordered through VWR and used as received.  

Co-crystals were obtained by grinding a 1:1 stoichiometric ratio of DITFBs 

(16.6 mg, 0.041mmol) and dipyridylurea ligands (10 mg, 0.041mmol) for 1-2 

minutes with a few drops of CHCl3. Method 1: Half of the ground mixture was 

dissolved in a minimal amount of DMSO. Water was allowed to vapor diffuse into 

the DMSO solution for 2-4 days. Small clusters of colorless needle-like co-

crystals resulted and were submitted for single crystal X-ray diffraction analysis 

(SC-XRD). Method 2: The remaining half of the ground mixture was heated in a 

minimal amount of CH3CN until complete dissolution and filtered using a syringe 

filter into a clean vial where they were left to slowly evaporate (3-7 days). All 

crystallizations that yielded a precipitate were collected, dissolved in CH2Cl2, and 

left to slowly evaporate once more.  Crystals of the parent dipyridylureas were 

obtained by dissolving each compound (10-20 mg) in a minimal amount of 

CH3CN.  The solution was filtered using a syringe filter into a clean vial and left to 

slowly evaporate (3-7 days). Crystallizations that yielded a precipitate were 

collected, dissolved in CH2Cl2, and left to slowly evaporate. All suitable crystals 

obtained were submitted for SCXRD. 
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Electrostatic potentials were computed with the Spartan 10’ software 

package. The crystal structure files (CIFs) of the dipyridylureas were imported 

into the program. The DITFB molecules were drawn in the program and fully 

optimized without constraints. The co-former energies were directly calculated 

using DFT B3YLP level of theory, using a 6-311++G** basis set under vacuum. 

The electrostatic potentials of the best donor and acceptor were obtained from 

the electrostatic potential map (0.002 e a.u. isovalue) and were automatically 

distinguished by the software. The electrostatic potentials of the second best 

donor and acceptor were determined by clicking on the region of interest on the 

molecule until the highest (or lowest) value was obtained for each binding-site.  

X-ray intensity data for all crystals were collected at 100(2) K using a 

Bruker D8 QUEST diffractometer equipped with a PHOTON 100 CMOS area 

detector and an Incoatec microfocus source (Mo Kα radiation, λ = 0.71073 Å). 

The raw area detector data frames were reduced and corrected for absorption 

effects using the Bruker APEX3, SAINT+ and SADABS programs.
27, 28

 Final unit 

cell parameters were determined by least-squares refinement of large sets of 

strong reflections taken from each data set. The structures were solved using 

dual-space intrinsic phasing methods with SHELXT.29 Subsequent difference 

Fourier calculations and full-matrix least-squares refinement against F2 were 

performed with SHELXL-201429 using OLEX2.
30

 Structures were deposited in the 

Cambridge Crystallographic Data Centre: CCDC 1552608-1552521.
 

FT-IR spectra were recorded on the crystalline samples using a 

PerkinElmer Spectrum 100 FT-IR Spectrometer. Background spectra were 
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recorded in 4 scans from 650 to 4000 cm-1 and then the crystalline sample was 

loaded onto the IR sample stage. The crystalline sample was added until the 

transmittance of key signals was lower than 90% and 32 scans were taken from 

650 to 4000 cm-1.  

Three flexible dipyridylurea ligands that consist of a central urea and two 

covalently attached pyridine ring ‘arms’ were investigated as co-formers with the 

three regioisomers of DITFB. As the structures of the dipyridylurea ligands were 

not in the CCDC, we first crystallized them to examine if the pyridyl moiety 

modulates the urea assembly motif compared to simple dibenzylurea. Next, we 

investigated co-crystal formation of each dipyridylurea with the three-ditopic 

halogen bond donors. Our hypothesis is that the central urea will form strong 

bifurcated urea-urea hydrogen bonding interactions leaving the pyridyl nitrogen 

free to act as a halogen bond acceptor. Specifically, we addressed the following 

questions: (1) Can we predict the structural outcome of the co-crystals through 

simple electrostatic potential calculations? (2) Is the urea-urea assembly motif 

conserved when the halogen-bond donors are introduced? (3) Does the position 

of the pyridyl nitrogen (o, m, p) impact the bond length, angle, and pattern of the 

urea assembly? (4) Do all halogen bond donors form interactions with suitable 

acceptors?  

The homomeric assembly of the dipyridylureas was first screened by 

crystallization through slow evaporation from CH2Cl2 or CH3CN to afford 

colorless needles of o-dipyridylurea (C13H14N4O), m-dipyridylurea dihydrate 

(C13H14N4O·(H2O)2) and p-dipyridylurea hydrate (C13H14N4O·H2O). As expected, 
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all three compounds formed the typical three-centered bifurcated hydrogen 

bonding interactions between the urea NH and the carbonyl oxygen on the 

neighboring molecule (Figure 3.2).  As compared with simple dibenzylurea, the 

hydrogen bonds distances are slightly shorter in these pyridyl systems with an 

average N-H···O distance = 2.83 Å versus 2.91 Å in the dibenzylurea, indicating 

a slightly stronger interaction.31 The N-H···O are shorter in the o-dipyridylurea 

than in the hydrates of m-dipyridylurea and p-dipyridylurea, with average bond 

lengths ranging from 2.823 to 2.842 Å. The bond angles are also smaller in the o-

urea with N-H···O (151.0°) then in the m-dipyridylurea (153.1° and 155.2°) or p-

dipyridylurea  (156.0°).   

 
 
Figure 3.2. Crystal structure of p-dipyridylurea depicting the urea three-center 
hydrogen bonding interaction known as the urea tape. Each N-H···O hydrogen-
bonding interaction (HB) is indicated by arrows. 
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In the crystal structure of o-dipyridylurea, one pyridine nitrogen is close in 

space to a weakly acidic methylene hydrogen on a neighboring dipyridylurea co-

former while the other pyridine nitrogen is proximal to a hydrogen on a 

neighboring pyridine ring (Figure 3.17). The m-dipyridylurea crystallized as a 

dihydrate where the pyridine acceptor interacts with water through O-H···N 

hydrogen bonding interactions. Two water molecules interconnect nearby 

dipyridylureas through water-to-water and water-to-pyridine hydrogen bonding 

interactions resulting in zig-zagged strands of water along the b-axis. (Figure 

3.18). Finally, the p-dipyridylurea displays similar water-to-pyridine hydrogen 

bonding interactions, although a single water molecule interconnects neighboring 

dipyridylurea molecules through O-H···N hydrogen bonds running along the b-

axis (Figure 3.19).    

To predict the probable co-crystallized structures of the three dipyridylurea 

co-formers with the regioisomers of DITFBs, we turned electrostatic 

computations. A simple prescreen of the co-formers allowed us to identify and 

compare the best donors and best acceptors present in these molecules in order 

to rank the binding sites and make general predictions about possible assembly 

motifs. The electrostatic potential of the co-formers were calculated using 

Spartan 10’ with the DFT B3YLP level of theory and a 6-311++G** basis set 

under vacuum. Figure 3.3A displays the electrostatic potential maps showing 

areas with the most negative electrostatic potential (red) which are most capable 

of acting as acceptors and areas of most positive electrostatic potential (blue)  

that indicates the potential donors.  The dipyridylureas present two urea N-Hs as 



www.manaraa.com

 

 144 

Table 3.1. Summary of hydrogen bond angles and distances obtained from 
crystal structures of the dipyridyl urea series 

aParameters obtained in Mercury from a crystal structure published by Watkinson 
et al. (31). 
 
donors and three acceptors (the urea oxygen and two pyridyl nitrogens) while the 

DITFBs offer ditopic halogen bond donors (Figure 3.3B). Comparing the 

numerical molecular electrostatic potentials for all compounds in Table 3.2, the 

urea NH’s are clearly the best donors with electrostatic potentials ranging from 

254 to 290 kJ/mol. The activated iodines displayed values ranging from 161 to 

169 kJ/mol, and are subsequently the second best donors. Among the potential 

acceptors, the o-dipyridylurea carbonyl oxygen is the clear winner with the most 

negative electrostatic potential at -237 kJ/mol versus its pyridyl nitrogen at -187 

kJ/mol.  However, when comparing the electrostatic potentials of the remaining 

dipyridylurea co-formers, the ranking is not straightforward. In the m-

dipyridylurea, the potential difference between the carbonyl oxygen and pyridyl 

nitrogen acceptors is quite small, only 6.11 kJ/mol.  This difference is even 

smaller, 5.31 kJ/mol, for p-dipyridylurea. Such a small difference in electrostatic 

potential between the two acceptors is problematic and may result in competition  
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Figure 3.3. Dipyridylureas contain one hydrogen bond donor and two potential 
acceptors. (A) Electrostatic potential maps of the dipyridylurea series and DITFB 
regioisomers, the red areas indicate negative electrostatic potentials, which are 
capable of acting as acceptor sites. (B) Abbreviations of the co-formers 
investigated in this study. The best donors (D1), best acceptors (A1), second best 
donors (D2), and second best acceptors (A2) are labelled. (C) Co-formers 
assembly predicted from their electrostatic potential ranking. 
 
between the acceptors for the best donor, the urea NH, which could lead to 

altered urea assembly or to multiple crystal forms as we attempt to co-crystallize 

these dipyridylureas with the DITFBs.21 The small electrostatic potential 

differences between acceptors did not appear to impact the urea assembly motif 

in the homomeric crystals, likely due to urea oxygen’s ability to engage in 

bifurcated hydrogen bonding with the urea NHs, which are energetically 

favorable as compared with pyridine nitrogen acceptor that can only engage in a 

the single linear hydrogen bond. In summary, these results suggest that the urea 

assembly as the best donor/best acceptor should be strongly favored in co-

crystallizations of o-dipyridylurea and DITFBs; however, in m- and p-  
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Table 3.2. Molecular electrostatic potential values of each binding site (kJ/mol) 

 

dipyridylureas the urea assembly is modestly favored leaving open the potential 

for competition between the acceptors.  

Samples of the dipyridylureas (o-, m-, and p-) were mixed or ground with 

the ditopic halogen bond donors DITFB in 1: 1 molar ratio and crystallized by 

vapor diffusion and slow evaporation experiments, eleven X-ray quality co-

crystals were obtained: o-dipyridylureao-DITFB, o-dipyridyluream-DITFB, o-

dipyridylureap-DITFB, m-dipyridylurea(o-DITFB)2, (m-dipyridylurea)2(o-

DITFB)7, m-dipyridyluream-DITFB, m-dipyridylureap-DITFB, p-dipyridylurea(o-

DITFB)2, p-dipyridyluream-DITFB, p-dipyridylureap-DITFB, and p-

dipyridylurea(p-DITFB)2. The hydrogen bond angles and distances obtained 

from the co-crystals are summarized in Table 3.3. We will now analyze the co-

crystal structures formed by the o-dipyridylurea, then turn to m-dipyridylurea co-

crystals, and finally to the p-dipyridylurea structures.  

Our electrostatic calculations predicted that the o-dipyridylurea co-former 

presents one clearly better acceptor, the urea oxygen, and two additional pyridyl 

nitrogen acceptors, which have significantly different electrostatic potentials.   As 
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anticipated, o-dipyridylurea formed co-crystals with all three regioisomers of 

DITFB with the conserved three-centered urea assembly and additional iodo to 

pyridyl halogen bonding interactions (Figure 3.4).  The o-dipyridylurea formed a 

1:1 co-crystal with o-DITFB, crystallizing in the orthorhombic system as o-

dipyridylureao-DITFB (space group P212121).  The two urea NH hydrogen-bond 

donors form similar but not identical interactions with the neighboring urea 

carbonyl oxygen with N-H···O distances of 2.797(3) Å and 2.843(3) Å and 

dihedral angles of 153(3)° and 152(4)° respectively.  The remaining pyridine 

acceptors interact with the o-DITFB with IN distances of 2.892(2) Å and 

2.831(2) Å and C-IN angles of 169.5(1)° and 177.7(1)° respectively, resulting in 

a serpentine patterned sheet when looking down the a-axis (Figure 3.4A). 

   Crystallization of o-dipyridylurea with m-DITFB also afforded a 1:1 co-

crystal o-dipyridyluream-DITFB in the monoclinic space group P21/c.  The urea 

hydrogen bonding interactions were slightly shorter with N-H···O distances of 

2.744(4) Å and 2.795(4) Å and the dihedral angles were 150(5)° and 161(5)° 

respectively.  The pyridine acceptors interact with the meta substituted halogen 

bond donors with IN distances of 2.935(7) Å and 2.893(7) Å and C-IN angles 

of 165.2(6)° and 172.7(4)° (major m-DITFB disorder component only), resulting in 

corrugated 2D layers (Figure 3.4B). The 2D layers are assembled from 1D 

strands of urea-urea hydrogen bonded tapes running along the a-axis interlinked 

through halogen bonding interactions with DITFB molecules to the pyridyl 

nitrogen along the bc crystallographic plane.   



www.manaraa.com

 

 148 

  Table 3.3. Hydrogen bond angles and distances obtained from the co-crystals. 

 

Slow evaporation of o-dipyridylurea and p-DITFB from acetonitrile resulted 

in colorless needle-like 1:1 o-dipyridylureap-DITFB co-crystals in the monoclinic 

space group C2/c. The typical three-centered urea interactions were observed 

with identical N-H···O distances (2.810(2) Å) and angles (149(2)°). The halogen 

bonding interaction between the pyridine acceptor and p-DITFB showed I···N 

distance of 2.888(1) Å with C-I···N angle of 173(1)°.  The 1D urea-urea hydrogen 

bonded tapes run along the b-axis and are linked through halogen bonding 

interactions to the pyridyl nitrogen, resulting in 2D layers that resemble a 

herringbone pattern on the ac crystallographic plane.  

In the case of the m-dipyridylurea co-former, the electrostatic potential of 

urea oxygen acceptor was slightly more negative that the pyridyl group; however 

the difference was small (6.11 kJ/mol), which suggested there might be 

competion. Co-crystallization of m-dipyridylurea with the regioisomers of DITFB  
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Figure 3.4. Comparison of structures from the 1:1 co-crystals of o-dipyridylurea 
with the regioisomers of DITFB show the conserved urea hydrogen bonded 
chains further assembled by halogen bonding interactions. Hydrogen and 
halogen bonds are shown as the thinner dotted bonds. (A) Views from o-
dipyridylureao-DITFB structure show zig-zagged 2D layers. (B) Views from o-
dipyridyluream-DITFB show similar 2D layers assembly. (C) Views from o-
dipyridylureap-DITFB highlight the similar synergistic action of hydrogen and 
halogen bonding interactions 

 

gave some unusual structures. Vapor diffusion of water into a 1:1 mixture of m-

dipyridylurea and o-DITFB in DMSO afforded colorless, twinned needle-like 

crystals of m-dipyridylurea(o-DITFB)2, a 1:2 co-crystal in the monoclinic system 

with space group P21/c.  Instead of the typical three-centered urea hydrogen 

bonding motif, the ureas form extended chains through amide like hydrogen 

bonds between one NH and the neighboring urea oxygen with N-H···O distance 

of 2.857(4) Å and angle of 159(4)°.  This leaves the remaining NH donor and an 

oxygen lone pair unsatisfied (Figure 3.5A, top). Instead, the second best donor, 

an iodo from o-DITFB, forms halogen bonds with the pyridyl nitrogens with I···N 

distances of 2.790(3) and 2.809(3) Å (Figure 3.5A, bottom). An O···I interaction is 
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formed between free oxygen lone pair and an iodo donor is present, similar to the 

interaction observed by the pyridyl bis-urea macrocycle. A 2016 CSD search 

performed by Cinčić et. al. indicated that there were only 12 reported entries 

involving  C=O···I interactions for both ortho and para DITFBs.32 Here, we 

observe an O···I interaction distance of 2.947(3) Å with an C=O···I angle of 

123.8(2)°, very close to what one would expect (120°) for halogen bonding to an 

sp2 hybridized oxygen atom.  

Identical crystallization conditions also afforded a complex twinned (m-

dipyridylurea)2(o-DITFB)7 co-crystal in the monoclinic space group P21/n.  There 

are two crystallographically independent m-dipyridylurea molecules and seven 

independent o-DITFBs in the structure.  Here, the urea hydrogen-bonding motif is 

observed with four different urea N-H···O distances ranging from 2.797(7) to 

2.941(8) Å. Multiple halogen bonding interactions organize the pyridine acceptors 

and the DITFBs through I···N distances of with distances ranging from 2.870(7)-

3.392(7) Å indicating both halogen bonds and short contacts with the DITFB 

drive the unique assembly.  Short halogen contacts are also observed between 

the urea oxygens and DITFB displaying I···O distances of 3.006(4) Å and  

3.031(4) Å. Individual o-DITFB molecules are tilted irregularly within stacks with 

six-molecule repeating units. Interestingly, the seventh independent o-DITFB 

molecule is trapped in the elliptical pores nearly perpendicular to the other 

structural features (Figure 3.5B).  Here, a C=O···I angle of 132.9° is observed 

which is larger than the expected angle of 120° for sp2 hybridized atoms; 

however, wider C=O···I angles have been reported in a study of co-crystals  
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Figure 3.5. Comparison of the two crystal forms of m-dipyridylurea and o-DITFB 
co-crystals grown from a 1:1 stoichiometric mixture afford modified structures.  
(A) (Top) Views from m-dipyridylurea(o-DITFB)2 highlight the linear amide 
hydrogen bonded chain where one NH group is not involved in additional 
interactions.  (Bottom) Both halogen donors form C-I⋯N interactions with the 
pyridyl nitrogens.  (B) Views from the (m-dipyridylurea)2(o-DITFB)7 co-crystal 
exhibiting the typical urea hydrogen bonding motif. Complex C-I···N and C-I···O 
halogen bonding interactions organize six o-DITFB molecules resulting in a 
pocket where a seventh o-DITFB molecule fits nearly perpendicularly. 
 

formed from DITFB’s and imines where C=O···I angles ranging from 120.6-

142.7° were observed.32 

Crystallization of m-dipyridylurea with m-DITFB through slow evaporation 

from CH3CN afforded colorless needles of the expected 1:1 co-crystals m-

dipyridyluream-DITFB in the monoclinic system with space group P21/c. The 

typical urea self association shows expected N-H···O distances of 2.816(8) and 
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2.908(8) Å and dihedral angles of 151(7)° and 156(7)°.  Subsequent halogen 

bonding of these two meta co-formers forms a tetrameric macrocycle structure 

(Figure 3.6A). The halogen bonding interactions show I···N distances of 2.768(6) 

Å and 2.803(6) Å and C-I···N angles of 175.8(2)° and 175.2(2)°. Two urea 

components are halogen bonded through the pyridine moiety to the DITFB to 

form a tetrameric structure with no void in the cyclic co-crystal.  

Slow evaporation of a 1:1 mixture of m-dipyridylurea and p-DITFB from 

CH3CN yielded colorless twinned needles of the expected m-dipyridylureap-

DITFB in the monoclinic system with space group P21/c.  Figure 3.6B illustrates 

the consistent three-centered urea interactions N-H···O distances 2.828(9) and 

2.917(9) Å with N-H···O angles of 157(9)° and 152(9)°.  Similar to Figure 3.3C, 

halogen bonding interactions between the pyridyl nitrogen and the DITFBs afford 

in linear 2D layers with I···N distances of 2.800(7) Å and 2.808(7) Å and C-I···N 

angles of 176.8(3)° and 171.4(3)°.   Overall, for the m-dipyridyl urea with the 

DITFB regioisomers, only the o-DITFB gave a structure that did not conserve the 

urea assembly motif, presumably due to the mismatch in geometry between 

these two building blocks. 

For the p-dipyridylurea co-former, the difference in electrostatic potentials 

between the urea oxygen acceptor and the pyridyl acceptor was even smaller; 

however, the urea assembly was consistently conserved and the activated 

halides interacted with the pyridyl nitrogens to give the predicted assembly 

proposed in Figure 3.3C.  Only the constrained o-DITFB exhibited additional 

short contacts (Figure 3.7A). Slow evaporation of the 1:1 mixture of p- 
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dipyridylurea and o-DITFB from CH2Cl2 afforded the 1:2 p-dipyridylurea(o-

DITFB)2 co-crystal in the monoclinic system with space group P21/c. Short I···N 

and I···O interactions define discrete (p-C13H14N4O)2(o-C6F4I2)4 clusters with 

halogen to pyridine interaction distances of I···N 2.822(3) Å and 3.046(3) Å and  

 

Figure 3.6. Comparison of 1:1 co-crystal structures: (A) m-
dipyridyluream-DITFB resulting in a macrocyclic structure 
with no void and (B) m-dipyridylureap-DITFB which forms 
infinite polymeric chains along the a-axis. 
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Figure 3.7. Crystal structures obtained by the p-dipyridylurea series with the 
regioisomers of DITFB afforded the expected urea chains.  A) Views from p-
dipyridylurea(o-DITFB)2 highlight the urea hydrogen bonded chains that are 
connected through C-I···N and C-I···O halogen bonding interactions.  B) Views 
from the p-dipyridyluream-DITFB co-crystal exhibit typical urea hydrogen 
bonded chains further connected through C-I···N halogen bonding interactions. 
C) Views from the p-dipyridylureap-DITFB co-crystals showing 1D urea 
hydrogen bonded chains connected through halogen bonding interactions to form 
2D layers. 
 
 C-I···N angles of 172.2(1)° and 158.3(1)° and short I···O distance of 3.025(2) Å 

(Figure 3.7A). The clusters are linked by three-center urea hydrogen bonding 

along the crystallographic [101] direction with typical N-H···O distances and 

angles (2.862(4) Å and 2.832(4) Å, 154(4)° and 156(4)°).  

Vapor diffusion of water into a 1:1 mixture of p-dipyridylurea and m-DITFB 

in DMSO yielded p-dipyridyluream-DITFB co-crystal in the triclinic system with 
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space group P-1.  The asymmetric unit consisted of four crystallographically 

independent p-dipyridylurea moieties and four independent m-DITFBs.  

Undulating 2D layers are built from urea hydrogen-bond strands along the a-axis 

linked by short N···I interactions with the m-DITFBs that range from 78.4 to 

80.2% of the van der Waals radii for N···I (Figure 3.7B).  Typically urea N-H···O 

distances range from 2.817(4) Å and 3.019(4) Å with an average distance of 

2.916 Å.  The halogen bonding interactions between the m-DITFB donor and the 

pyridine acceptors show I···N distances from 2.769(3) Å and 2.833(3) Å and C-

I···N angles of 178.7(1)° and 174.6(1)° resulting in a 2D layered structure with a 

herringbone pattern.   The m-DITFB molecules are stacked into columns along 

the a-axis.   

The crystal structure of p-dipyridylureap-DITFB was obtained through a 

slow evaporation technique from CH3CN resulting in colorless 1:1 urea: DITFB 

co-crystals in the orthorhombic system with the space group Fdd2.  As predicted, 

the structure (Figure 3.7C) displayed the expected urea hydrogen bonding 

columns, formed down the b-axis with N-H···O distances of 2.857(3) Å and 

2.877(3) Å and N-H···O angles of N-H···O 151(3)° and 154(3)°.  The halogen 

bonding interactions join the columns to form 2D layers parallel to the 

crystallographic (011) plane (I···N 2.863(2) Å and 2.875(2) Å, C-I···N 175.8(9)° 

and 172.6(9)°).  A second crystal form, p-dipyridylurea(p-DITFB)2, was also 

obtained through a vapor diffusion of water into a 1:1 mixture of the p-

dipyridylurea and p-DITFB in DMSO (Figure 3.23).  In this structure, the typical 
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urea assembly motif is conserved, as is the pyridyl to iodo C-I···N halogen 

bonding interaction.     

Co-crystals are important in the pharmaceutical industry as they can alter 

the physicochemical properties and improve the stability of low melting 

pharmaceuticals.33,34 Table 3.4 compares the melting points of the co-crystals 

and pyridylurea co-formers. The melting points of neat co-formers, o-DITFB and 

p-DITFB were recorded to be 58-60°C and 112-114°C respectively; while m-

DITFB is a liquid at room temperature. The dipyridylureas co-formers displayed 

higher melting points with the hydrate p-DITFBs exhibiting the highest (183-

184°C), consistent with literature reports.35,36 Upon co-crystallization, all o-

dipyridylureaDITFB and p-dipyridylureaDITFB co-crystals have higher melting 

points than their neat co-formers. These materials exhibit the common urea-urea 

interactions as well as pyridyl to iodine halogen bonds, suggesting that satisfying 

the full complement of donors and acceptors increases the melting point.  In 

contrast, the co-crystals of the m-dipyridylurea with DITFBs varied widely in 

stability likely reflecting their different assembled structures.  Co-crystals that 

maintain the urea-urea interactions as well as the pyridyl to iodine halogen 

bonds, specifically the m-dipyridyluream-DITFBs and m-dipyridylureap-DITFBs, 

showed higher melting points 163-164°C.  In contrast, the two crystal forms of m-

dipyridylurea with o-DITFB had significantly lower melting points (68-135 °C) than 

their urea conformer.  The absence of the bifurcated urea assembly was 

associated with the co-crystal with the lowest melting point (68 °C for m-  
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 Table 3.4. Stoichiometry of the co-crystals obtained with their corresponding 
melting points and the observed IR bands.             

 
aBand obscured in the dihydrate 

dipyridylurea(o-DITFB)2 co-crystal) suggesting that this interaction plays an 

important role in thermal stability.  

X-ray crystallography confirmed that all structures are co-crystals and that 

no salts have formed. We used FT-IR spectroscopy to probe the new or 

energetically modified hydrogen and halogen bonding interactions looking for 

shifts in the key vibrational bands (νC=N, νC=O, and νN-H) between the co-crystals 

and the parent dipyridylureas that would indicate altered intermolecular 

interactions.  Most co-crystals displayed wavenumber shifts between the parent 

dipyridylurea co-former and the co-crystals ranging from 1 – 27 cm-1. Co-crystals 

are known to exhibit a slight shift in vibrational bands when compared to a 

reference material as a result of altered intermolecular interactions.37 Significant 

shifting (30-40 cm-1) is often a result of salt formation but can also be a result of 

degradation of one or both co-formers.37 We monitored the N···I halogen bond 

formation indirectly through the pyridine’s νC=N band, which show shifts from 3 - 

27 cm-1.  The relatively small observed shift of these bands make it challenging to 

characterize this interaction in the absence of the single crystal data. 
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Upon co-crystal formation, we observed that the dipyridylureas typically 

maintain the three-centered bifurcated interaction of the urea.  Only minor shifting 

was observed with absolute differences between 1 - 6 cm-1 of the carbonyl νC=O 

band to either higher or lower wavenumbers, likely within experimental 

error. Interestingly, two co-crystals displayed significant shifts, larger than10 cm-1, 

which were attributed to additional short O···I contacts. Specifically, the (m-

dipyridylurea)2· (o-DITFB)7 showed a shift of 22 cm-1 to higher wavenumbers with 

O···I distances of 3.006(4) Å and C=O···I angles of 132.9° while the p-

dipyridylurea·(o-DITFB)2 showed a shift of 15 cm-1 to lower wavenumbers with 

O···I distances of 3.025(2) Å and C=O···I angles of 109.6(2)°. This data set 

suggests that the C=O vibrational band is more susceptible when closely packed 

to halogen atoms similar to what was reported for the macrocyclic pyridyl bis-

urea system, which showed ~ 20 cm-1 shift to lower wavenumbers upon co-

crystal formation with DITFBs.20 A larger study of co-crystals with C=O···I 

interactions are needed to ascertain if this is a general trend.  

An observed νN-H stretch from 3321 to 3330 cm-1 correlated closely with 

the typical urea assembly motif and co-crystal structure predicted in Figure 3.3A.  

Disruption of the three-centered urea interaction in the m-dipyridylurea·(o-

DITFB)2 shifted this band to 3369 cm-1.   Close proximity of halogen atom crystal 

packing also had a large effect on the νN-H band.  For example, in the (m-

dipyridylurea)2·(o-DITFB)7’s co-crystal the urea nitrogen forms and additional the 

N···I interaction (3.335(7) Å), and we observe a shift of the νN-H to 3352 cm-1. 

Similarly, the p-dipyridylurea·(o-DITFB)2 co-crystal has a close contact between 
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the urea oxygen and a neighboring iodine (3.025(2) Å) and displays the νN-H at 

3348 cm-1.  In general, FT-IR provides a ready comparison of the urea assembly 

through this NH stretch as long as additional NH, OH, or protic solvents do not 

obscure the region.  

3.3 Conclusions 

In summary, we systematically investigated structures of three flexible 

dipyridylurea ligands and eleven of their co-crystals with o-, m-, and p-DITFB. 

The crystals of the ne3t dipyridylurea ligands all exhibited the typical bifurcated 

urea-urea hydrogen-bonding motif, suggesting that the position and proximity of 

the pyridyl nitrogen with respect to the urea moiety does not influence the urea-

urea assembly. Thus, the altered assembly of bis-urea macrocycle, observed 

previously, is likely a result of the pyridyl nitrogen and urea being constrained 

within its cyclic framework. Comparison of calculated electrostatic potentials of 

the o-dipyridylurea ligand and the three regioisomers of DITFB correctly 

predicted that the co-crystals would exhibit bifurcated urea binding patterns and 

pyridyl-halogen interactions with DITFB. Indeed, the majority of structures 

exhibited 1:1 dipyridylurea: DITFB stoichiometries with typical urea assembly and 

short pryidyl to DITFB halogen bonds with an average N···I interaction of 80.6% 

of the van der Waals radii.  Furthermore, the urea-urea tape motif was conserved 

in the majority of the co-crystal structures (10 out of 11) suggesting that the N-

H···O interaction between neighboring urea molecules is the best donor-acceptor 

pair present in these systems.  Competition between acceptors and altered 

assembly were observed when the two building blocks were frustrated by the 
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relative orientation of their donors and acceptors.  This is highlighted by the co-

crystal structures of m-dipyridylurea with the constrained o-DITFB regioisomer, 

which exhibited both pyridine nitrogen N···I interactions as well as O···I 

interactions with the urea carbonyl that fall in the longer range of values observed 

(84.2-86.6 % vs. 81.5-85.3% van der Waals for O···I interactions in 

literature).32,38  In comparison, the pyridyl bis-urea macrocycle displayed the O···I 

interaction in co-crystals with DITFB with shorter interaction distances of 78.1-

82.0 % van der Waals,20 suggesting that chemists can design systems to favour 

O···I interaction over the N···I halogen bond.  Overall, simple electrostatic 

calculations are a useful strategy for screening building blocks for their potential 

to satisfy all binding sites forming both hydrogen and halogen bonds. We are 

currently investigating the assembly of dipyridyl substituted oxalamides with 

DITFBs to see if similar hydrogen and halogen bonding patterns are observed for 

geometrically constrained DITFB and evaluate a wider range of structures to 

correlate the impact C=O···I interactions have on corresponding carbonyl 

vibrational bands.   

3.4 FUTURE WORK 

 We are currently screening co-crystallization of the DITFB’s alongside 

dipyridyloxalamide counterparts to extend this study and compare the use of 

Spartan and the hydrogen bond propensity database as prediction tools.  

3.5 EXPERIMENTAL 

All compounds were characterized by 1H NMR, Mass Spec, and FT-IR. 
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Figure 3.8. 1H NMR of crystallized o-dipyridylurea, each proton 

peak is labeled with its corresponding position on the inset 

structure. 1H-NMR (300MHz, DMSO-d) δ 8.495 (d, 2H), 7.76 (t, 

2H), 7.2-7.3 (m, 4H), 6.75 (t, 2H), 4.33 (d, 4H). Water present in 

NMR solvent. 

Figure 3.9. 1H NMR of crystallized m-dipyridylurea, each proton 

peak is labeled with its corresponding position on the inset 

structure. 1H-NMR (300MHz, DMSO-d) δ 8.45 (m, 4H), 7.64 (d, 

2H), 7.33 (d, 2H), 6.60 (t, 2H), 4.24 (d, 4H). Water present in 

NMR solvent. 
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Figure 3.10 1H NMR of crystallized p-dipyridylurea, each proton 

peak is labeled with its corresponding position on the inset 

structure. 1H-NMR (300MHz, DMSO-d) δ 8.48 (d, 4H), 7.23 (d, 

4H), 6.73 (t, 2H), 4.24 (d, 4H). Water present in NMR solvent. 

Figure 3.11. High resolution mass spec of o-dipyridylurea. 

HRMS (EI): m/z calculated for C13H14N4O [M+]: 243.1240, 

observed: 243.1239. 
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Figure 3.12. High resolution mass spec of m-dipyridylurea. 

HRMS (EI): m/z calculated for C13H14N4O [M+]: 243.1240, 

observed: 243.1239. 

Figure 3.13. High resolution mass spec of p-dipyridylurea. 

HRMS (EI): m/z calculated for C13H14N4O [M+]: 243.1240, 

observed: 243.1238. 
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Figure 3.14. FT-IR spectra of o-dipyridylurea with key vibrational 

bands indicated with their corresponding wavenumber.  

 

Figure 3.15. FT-IR spec of m-dipyridylurea with key vibrational 

bands indicated with their corresponding wavenumber. The 

dihydrate character of this co-crystal makes conclusive 

characterization of the NH band more difficult. 

.  
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Figure 3.17. SCXRD of o-dipyridylurea. (A) view of the three-center urea 

hydrogen bonding interaction (B) View down the crystallographic a-axis 

demonstrating crystal packing.  

 

Figure 3.16. FT-IR spec of p-dipyridylurea with key vibrational 

bands indicated with their corresponding wavenumber. 

.  
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Figure 3.18. SCXRD of m-dipyridylurea dihydrate. (A) view of the three-center 

urea hydrogen bonding interaction displaying the water-to-water and water-to-

pyridine interactions (B) View down the crystallographic b-axis demonstrating 

crystal packing.  

 

Figure 3.19. SCXRD of p-dipyridylurea hydrate. (A) view of the three-center urea 

hydrogen bonding interaction displaying the water-to-pyridine interaction (B) View 

down the crystallographic c-axis demonstrating crystal packing.  
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Figure 3.20. FT-IR spec of o-dipyridylureaDITFB co-crystals. FT-IR 

spectroscopy was used to probe hydrogen and halogen bonding interactions 

present in the co-crystals. The three co-crystals structures of o-dipyridylurea and 

DITFBs all showed typical three-center urea hydrogen bonding interactions that 

are observed in the parent o-dipyridylurea structure, as well as additional pyridyl 

– iodo halogen bonds.  Interestingly, the NH stretch was not significantly shifted 

in the co-crystals, although the peaks were broadened in the co-crystals. 

However, both νC=O (1632 to 1626-1634 cm-1) and νC=N (1594 cm-1 to 1591-1601 

cm-1) were shifted.   

o-dipyridylurea  

 

Identification code    1_DCM 

Empirical formula    C13H14N4O 

Formula weight    242.28 

Temperature/K    100(2) 

Crystal system    monoclinic 

Space group     P21 



www.manaraa.com

 

 168 

a/Å      4.5260(4) 

b/Å      10.0021(8) 

c/Å      13.3135(11) 

α/°      90 

β/°      95.911(3) 

γ/°      90 

Volume/Å3     599.49(9) 

Z      2 

ρcalcg/cm3     1.342 

μ/mm-1     0.090 

F(000)     256.0 

Crystal size/mm3    0.56 × 0.44 × 0.24 

Radiation     MoKα (λ = 0.71073) 

2Θ range for data collection/°  5.104 to 60.096 

Index ranges    -6 ≤ h ≤ 6, -14 ≤ k ≤ 14, -18 ≤ l ≤18 

Reflections collected   28693 

Independent reflections   3502 [Rint = 0.0384, Rsigma = 0.0264] 

Data/restraints/parameters  3502/1/172 

Goodness-of-fit on F2   1.034 

Final R indexes [I>=2σ (I)]   R1 = 0.0344, wR2 = 0.0785 

Final R indexes [all data]   R1 = 0.0437, wR2 = 0.0830 

Largest diff. peak/hole / e Å-3  0.28/-0.20 
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o-dipyridylureao-DITFB  

Identification code  1aDMSO  

Empirical formula  C19H14F4I2N4O  

Formula weight  644.14  

Temperature/K  100(2)  

Crystal system  orthorhombic  

Space group  P212121  

a/Å  4.4908(3)  

b/Å  13.7479(8)  

c/Å  34.1596(19)  

α/°  90  

β/°  90  

γ/°  90  

Volume/Å3  2109.0(2)  

Z  4  

ρcalcg/cm3  2.029  

μ/mm-1  3.035  

F(000)  1224.0  

Crystal size/mm3  0.48 × 0.12 × 0.04  

Radiation  MoKα (λ = 0.71073)  
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2Θ range for data collection/°  4.644 to 60.16  

Index ranges  -6 ≤ h ≤ 6, -19 ≤ k ≤ 19, -48 ≤ l ≤ 48  

Reflections collected  103423  

Independent reflections  6204 [R
int

=0.0415, R
sigma

=0.0175]  

Data/restraints/parameters  6204/0/280  

Goodness-of-fit on F2  1.122  

Final R indexes [I>=2σ (I)]  R1 = 0.0176, wR2 = 0.0309  

Final R indexes [all data]  R1 = 0.0201, wR2 = 0.0313  

Largest diff. peak/hole / e Å-3  0.41/-0.40  

o-dipyridyl uream-DITFB  

Identification code   1bDMSO 

Empirical formula    C19H14F4I2N4O 

Formula weight    644.14 

Temperature/K    100(2) 

Crystal system   monoclinic 

Space group    P21/c 

a/Å      4.4606(4) 

b/Å      33.073(3) 

c/Å      14.6219(12) 

α/°      90 

β/°      92.594(2) 
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γ/°      90 

Volume/Å3     2154.9(3) 

Z      4 

ρcalcg/cm3     1.985 

μ/mm-1     2.971 

F(000)     1224.0 

Crystal size/mm3    0.28 × 0.04 × 0.02 

Radiation MoKα    (λ = 0.71073) 

2Θ range for data collection/°  4.628 to 55.5 

Index ranges    -5 ≤ h ≤ 5, -43 ≤ k ≤ 43, -18 ≤ l ≤ 19 

Reflections collected   96670 

Independent reflections   5050 [Rint = 0.0753, Rsigma = 0.0343] 

Data/restraints/parameters  5050/143/315 

Goodness-of-fit on F2   1.061 

Final R indexes [I>=2σ (I)]  R1 = 0.0362, wR2 = 0.0644 

Final R indexes [all data]   R1 = 0.0568, wR2 = 0.0692 

Largest diff. peak/hole / e Å-3  1.11/-0.89 

o-dipyridyl ureap-DITFB  

Identification code    1cACN 

Empirical formula    C19H14F4I2N4O 

Formula weight    644.14 

Temperature/K    100(2) 

Crystal system    monoclinic 
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Space group     C2/c 

a/Å      31.679(2) 

b/Å      4.5203(3) 

c/Å      14.7400(9) 

α/°      90 

β/°      99.704(2) 

γ/°      90 

Volume/Å3     2080.6(2) 

Z      4 

ρcalcg/cm3     2.056 

μ/mm-1     3.077 

F(000)     1224.0 

Crystal size/mm3    0.44 × 0.1 × 0.06 

Radiation MoKα    (λ = 0.71073) 

2Θ range for data collection/° 5.218 to 60.11 

Index ranges    -44 ≤ h ≤ 44, -6 ≤ k ≤ 6, -20 ≤ l ≤ 20 

Reflections collected   40690 

Independent reflections   3060 [Rint = 0.0388, Rsigma = 0.0168] 

Data/restraints/parameters  3060/0/166 

Goodness-of-fit on F2   1.124 

Final R indexes [I>=2σ (I)]   R1 = 0.0177, wR2 = 0.0428 

Final R indexes [all data]   R1 = 0.0201, wR2 = 0.0439 

Largest diff. peak/hole / e Å-3 0.54/-0.48 
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Figure 3.21. FT-IR spec of m-dipyridylureaDITFB co-crystals. The co-crystals 

structures of m-dipyridylurea and DITFBs exhibited typical three-center urea 

hydrogen bonding interactions in nearly all cases, while all structures have 

additional pyridyl – iodo halogen bonds. The m-dipyridylurea(o-DITFB)2 co-

crystal has disrupted urea hydrogen bonding interactions resulting in a halogen 

bond between the free oxygen lone pair and an iodo donor. The (m-

dipyridylurea)2(o-DITFB)7  has the predicted three-center urea bifurcated 

hydrogen bonding, although this structure does exhibit a short contact between 

the urea carbonyl oxygen and one of the halogen bond donors.   The dihydrate 

character of the parent urea made characterization of NH stretch more difficult. 

However, the two m-dipyridylureao-DITFB exhibited broadening in the NH region 

reflecting the complex intermolecular interactions of the two co-crystals. The νC=N 

(1570 cm-1 to 1581-1597 cm-1 ). The carbonyl band, νC=O (1638 cm-1) shifted only 

slightly to lower wavenumbers in the m-dipyridyluream-DITFB and m-

dipyridylureap-DITFB co-crystals to 1632 cm-1 for both co-crystals. Shifting to 

higher wavenumbers is observed in the (m-dipyridylurea)2(o-DITFB)7 co-crystal 

(1638 cm-1 to 1660 cm-1) and the m-dipyridylurea(o-DITFB)2 co-crystal (1638 cm-

1 to 1644 cm-1).  
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m-dipyridylurea2H2O 

Identification code    BD_2 

Empirical formula    C13H18N4O3 

Formula weight    278.31 

Temperature/K    100(2) 

Crystal system    monoclinic 

Space group     P21/c 

a/Å      19.9447(9) 

b/Å      4.5612(2) 

c/Å      15.4649(7) 

α/°      90 

β/°      100.043(2) 

γ/°      90 

Volume/Å3     1385.31(11) 

Z      4 

ρcalcg/cm3     1.334 

μ/mm-1     0.097 

F(000)     592.0 

Crystal size/mm3    0.3 × 0.24 × 0.04 

Radiation     MoKα (λ = 0.71073) 

2Θ range for data collection/°  5.35 to 60.172 

Index ranges    -28 ≤ h ≤ 28, -6 ≤ k ≤ 16, -21 ≤ l ≤21 

Reflections collected   65373 

Independent reflections   4070 [Rint = 0.0390, Rsigma = 0.0183] 
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Data/restraints/parameters  4070/0/206 

Goodness-of-fit on F2   1.038 

Final R indexes [I>=2σ (I)]   R1 = 0.0362, wR2 = 0.0904 

Final R indexes [all data]   R1 = 0.0510, wR2 = 0.0973 

Largest diff. peak/hole / e Å-3  0.36/-0.21 

m-dipyridyl urea(o-DITFB)2  

Identification code    2aDMSO 

Empirical formula   C25H14F8I4N4O   

Formula weight    1046.00 

Temperature/K    100(2) 

Crystal system    monoclinic 

Space group    P21/c 

a/Å      14.1182(12) 

b/Å      23.9797(19) 

c/Å      9.0323(8) 

α/°      90 

β/°      105.412(3) 

γ/°      90 

Volume/Å3     2947.9(4) 

Z      4 

ρcalcg/cm3     2.357 

μ/mm-1     4.307 

F(000)     1936.0 
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Crystal size/mm3    0.46 × 0.2 × 0.04 

Radiation MoKα    (λ = 0.71073) 

2Θ range for data collection/° 4.528 to 56.76 

Index ranges    -18 ≤ h ≤ 18, -31 ≤ k ≤ 31, -12 ≤ l ≤ 12 

Reflections collected   109266 

Independent reflections   7339 [Rint = 0.0680, Rsigma = 0.0309] 

Data/restraints/parameters  7339/0/387 

Goodness-of-fit on F2   1.039 

Final R indexes [I>=2σ (I)]   R1 = 0.0281, wR2 = 0.0600 

Final R indexes [all data]   R1 = 0.0412, wR2 = 0.0648 

Largest diff. peak/hole / e Å-3  1.17/-0.78 

 (m-dipyridyl urea)2(o-DITFB)7   

Identification code    BD_2A_11 

Empirical formula    C68H28F28I14N8O2 

Formula weight    3297.58 

Temperature/K    100(2) 

Crystal system    monoclinic 

Space group     P21/n 

a/Å      8.5945(4) 

b/Å      23.3518(10) 

c/Å      42.2742(17) 

α/°      90 

β/°      90.0566(13) 



www.manaraa.com

 

 177 

γ/°      90 

Volume/Å3     8484.3(6) 

Z      4 

ρcalcg/cm3     2.582 

μ/mm-1     5.218 

F(000)     6008.0 

Crystal size/mm3    0.22 × 0.08 × 0.06 

Radiation MoKα    (λ = 0.71073) 

2Θ range for data collection/°  4.23 to 55.562 

Index ranges    -11 ≤ h ≤ 11, -30 ≤ k ≤ 30, -55 ≤ l ≤ 55 

Reflections collected   292668 

Independent reflections   20017 [Rint = 0.0571, Rsigma = 0.0278] 

Data/restraints/parameters  20017/18/1082 

Goodness-of-fit on F2   1.164 

Final R indexes [I>=2σ (I)]   R1 = 0.0384, wR2 = 0.0616 

Final R indexes [all data]   R1 = 0.0492, wR2 = 0.0638 

Largest diff. peak/hole / e Å-3  0.77/-0.98 

m-dipyridyl uream-DITFB  

Identification code    2B_CH3CN 

Empirical formula    C19H14F4I2N4O 

Formula weight    644.14 

Temperature/K    100(2) 

Crystal system    monoclinic 
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Space group     P21/c 

a/Å      13.9125(8) 

b/Å      4.5117(3) 

c/Å      33.0109(19) 

α/°      90 

β/°      97.3790(10) 

γ/°      90 

Volume/Å3     2054.9(2) 

Z      4 

ρcalcg/cm3     2.082 

μ/mm-1     3.115 

F(000)     1224.0 

Crystal size/mm3    0.44 × 0.02 × 0.02 

Radiation MoKα    (λ = 0.71073) 

2Θ range for data collection/°  4.452 to 55.328 

Index ranges    -18 ≤ h ≤ 18, -5 ≤ k ≤ 5, -43 ≤ l ≤ 43 

Reflections collected   50295 

Independent reflections   4876 [Rint = 0.0605, Rsigma = 0.0358] 

Data/restraints/parameters  4876/1/279 

Goodness-of-fit on F2   1.131 

Final R indexes [I>=2σ (I)]   R1 = 0.0447, wR2 = 0.0910 

Final R indexes [all data]   R1 = 0.0620, wR2 = 0.0972 

Largest diff. peak/hole / e Å-3  1.67/-1.19 
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m-dipyridyl ureap-DITFB  

Identification code    2cACN 

Empirical formula    C19H14F4I2N4O 

Formula weight    644.14 

Temperature/K    100(2) 

Crystal system    monoclinic 

Space group     P21/c 

a/Å      13.1113(18) 

b/Å      4.5390(6) 

c/Å      35.235(5) 

α/°      90 

β/°      98.238(2) 

γ/°      90 

Volume/Å3     2075.3(5) 

Z      4 

ρcalcg/cm3     2.062 

μ/mm-1     3.085 

F(000)     1224.0 

Crystal size/mm3    0.36 × 0.08 × 0.06 

Radiation MoKα    (λ = 0.71073) 

2Θ range for data collection/°  4.172 to 56.678 

Index ranges    -17 ≤ h ≤ 17, 0 ≤ k ≤ 6, 0 ≤ l ≤ 47 

Reflections collected   5302 
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Independent reflections   5302 [Rint = 0.0560, Rsigma = 0.0471] 

Data/restraints/parameters  5302/1/280 

Goodness-of-fit on F2   1.147 

Final R indexes [I>=2σ (I)]   R1 = 0.0477, wR2 = 0.1140 

Final R indexes [all data]   R1 = 0.0514, wR2 = 0.1152 

Largest diff. peak/hole / e Å-3  1.31/-1.68 

Figure 3.22. FT-IR spec of p-dipyridylureaDITFB co-crystals. The co-crystals 

structures of p-dipyridylurea and DITFBs exhibited typical three-center urea 

hydrogen bonding interactions with  pyridyl – iodo halogen bonds in all cases. 

Although, it should be noted that a short contact between the carbonyl oxygen 

and the iodo donor is observed in the crystal structure of p-dipyridylureao-

DITFB. The NH stretch was impacted in the co-crystals, shifting to higher 

wavenumbers in the p-dipyridylureao-DITFB co-crystal (3345 cm-1 to 3348 cm-1) 

and to lower wavenumbers in the rest of the co-crystal structures (3345 cm-1 to 

3324-3330 cm-1). Both the carbonyl (νC=O = 1627 cm-1) and pyridyl (νC=N = 1586 

cm-1) bands behave similarly; exhibits shifting to higher wavenumbers for the p-

dipyridylureap-DITFB co-crystal (νC=O = 1627 cm-1 to 1629 cm-1) and (νC=N = 

1586 cm-1 to 1593 cm-1)  while shifting to lower wavenumbers is observed for all 

other co-crystals (νC=O = 1627 cm-1 to 1612-1626 cm-1) and (νC=N = 1586 cm-1 to 

1573-1681 cm-1).  
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p-dipyridylureaH2O 

Identification code    BD_2 

Empirical formula    C13H18N4O3 

Formula weight    278.31 

Temperature/K    100(2) 

Crystal system    monoclinic 

Space group     P21/c 

a/Å      19.9447(9) 

b/Å      4.5612(2) 

c/Å      15.4649(7) 

α/°      90 

β/°      100.043(2) 

γ/°      90 

Volume/Å3     1385.31(11) 

Z      4 

ρcalcg/cm3     1.334 

μ/mm-1     0.097 

F(000)     592.0 

Crystal size/mm3    0.3 × 0.24 × 0.04 

Radiation     MoKα (λ = 0.71073) 

2Θ range for data collection/°  5.35 to 60.172 

Index ranges    -28 ≤ h ≤ 28, -6 ≤ k ≤ 16, -21 ≤ l ≤21 

Reflections collected   65373 
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Independent reflections   4070 [Rint = 0.0390, Rsigma = 0.0183] 

Data/restraints/parameters  4070/0/206 

Goodness-of-fit on F2   1.038 

Final R indexes [I>=2σ (I)]   R1 = 0.0362, wR2 = 0.0904 

Final R indexes [all data]   R1 = 0.0510, wR2 = 0.0973 

Largest diff. peak/hole / e Å-3  0.36/-0.21 

p-dipyridyl urea(o-DITFB)2  

Identification code    3A_DCM 

Empirical formula    C25H14F8I4N4O 

Formula weight    1046.00 

Temperature/K    100(2) 

Crystal system    monoclinic 

Space group     P21/c 

a/Å      25.7640(12) 

b/Å      4.5481(2) 

c/Å      25.2307(12) 

α/°      90 

β/°      96.6010(10) 

γ/°      90 

Volume/Å3     2936.9(2) 

Z      4 

ρcalcg/cm3     2.366 

μ/mm-1     4.323 
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F(000)     1936.0 

Crystal size/mm3    0.2 × 0.04 × 0.04 

Radiation MoKα    (λ = 0.71073) 

2Θ range for data collection/°  4.28 to 56.694 

Index ranges    -34 ≤ h ≤ 34, -6 ≤ k ≤ 6, -33 ≤ l ≤ 33 

Reflections collected   114520 

Independent reflections   7281 [Rint = 0.0422, Rsigma = 0.0193] 

Data/restraints/parameters  7281/0/388 

Goodness-of-fit on F2   1.125 

Final R indexes [I>=2σ (I)]  R1 = 0.0288, wR2 = 0.0471 

Final R indexes [all data]   R1 = 0.0372, wR2 = 0.0489 

Largest diff. peak/hole / e Å-3  1.32/-0.94 

p-dipyridyl uream-DITFB  

Identification code    3bDMSO 

Empirical formula    C19H14F4I2N4O 

Formula weight    644.14 

Temperature/K    100(2) 

Crystal system    triclinic 

Space group     P-1 

a/Å      9.2589(5) 

b/Å      18.7560(11) 

c/Å      24.1561(13) 

α/°      97.001(2) 
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β/°      91.435(2) 

γ/°      98.901(2) 

Volume/Å3     4109.4(4) 

Z      8 

ρcalcg/cm3     2.082 

μ/mm-1     3.116 

F(000)     2448.0 

Crystal size/mm3    0.46 × 0.12 × 0.04 

Radiation MoKα    (λ = 0.71073) 

2Θ range for data collection/°  4.29 to 60.188 

Index ranges    -13 ≤ h ≤ 13, -26 ≤ k ≤ 26, -33 ≤ l ≤ 34 

Reflections collected   202858 

Independent reflections   24115 [Rint = 0.0678, Rsigma = 0.0476] 

Data/restraints/parameters  24115/0/1113 

Goodness-of-fit on F2   1.006 

Final R indexes [I>=2σ (I)]   R1 = 0.0390, wR2 = 0.0656 

Final R indexes [all data]   R1 = 0.0723, wR2 = 0.0744 

Largest diff. peak/hole / e Å-3  1.12/-1.10 

p-dipyridyl ureap-DITFB  

Identification code    3cACN 

Empirical formula    C19H14F4I2N4O  

Formula weight    644.14 

Temperature/K    100(2) 
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Crystal system    orthorhombic 

Space group     Fdd2  

a/Å      38.332(3) 

b/Å      47.044(3) 

c/Å      4.5676(3) 

α/°      90 

β/°      90 

γ/°      90 

Volume/Å3     8236.6(10) 

Z      16 

ρcalcg/cm3     2.078 

μ/mm-1     3.109  

F(000)     4896.0  

Crystal size/mm3    0.46 × 0.04 × 0.03  

Radiation MoKα    (λ = 0.71073) 

2Θ range for data collection/°  4.25 to 60.164  

Index ranges    -54 ≤ h ≤ 54, -66 ≤ k ≤ 66, -6 ≤ l ≤ 6  

Reflections collected   101299 

Independent reflections   6058 [Rint = 0.0421, Rsigma = 0.0201] 

Data/restraints/parameters  6058/1/279  

Goodness-of-fit on F2   1.045 

Final R indexes [I>=2σ (I)]   R1 = 0.0155, wR2 = 0.0281 

Final R indexes [all data]   R1 = 0.0191, wR2 = 0.0286 
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Largest diff. peak/hole / e Å-3  0.31/-0.22 

p-dipyridylurea(p-DITFB)2  

Identification code    3cDMSO 

Empirical formula    C25H14F8I4N4O 

Formula weight    1046.00 

Temperature/K    100(2) 

Crystal system    monoclinic 

Space group     I2/a 

a/Å      25.0342(8) 

b/Å     4.53820(10) 

c/Å      25.7638(13) 

α/°      90 

β/°      100.7740(10) 

γ/°      90 

Volume/Å3     2875.43(18) 

Z      4 

ρcalcg/cm3     2.416 

μ/mm-1     4.415 

F(000)     1936.0 

Crystal size/mm3    0.24 × 0.02 × 0.02 

Radiation MoKα    (λ = 0.71073) 

2Θ range for data collection/° 5.032 to 55.48 

Index ranges    -32 ≤ h ≤ 32, -5 ≤ k ≤ 5, -33 ≤ l ≤ 33 
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Reflections collected   32026 

Independent reflections   3354 [Rint = 0.0737, Rsigma = 0.0374] 

Data/restraints/parameters  3354/0/194 

Goodness-of-fit on F2   1.106 

Final R indexes [I>=2σ (I)]   R1 = 0.0382, wR2 = 0.0552 

Final R indexes [all data]   R1 = 0.0613, wR2 = 0.0600 

Largest diff. peak/hole / e Å-3  1.67/-1.28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23. SCXRD structure of p-dipyridylurea(o-DITFB)2 which was 

obtained through vapor diffusion from DMSO resulting in colorless 1:2 urea: 

DITFB co-crystals in the monoclinic system with the space group I2/a.  As 

predicted, urea hydrogen bonding columns, formed down the b-axis with N-

H···O distances of 2.828(6) Å and N-H···O angles of N-H···O 149(5)°. The 

halogen bonding interactions join the columns to form 2D layers (I···N 

2.825(4) Å and C-I···N 173.8(6)°). A secondary interaction is formed between 

the urea N-H and the activated iodine (I···N 3.207(4) Å and C-I···N 176.4(2)°) 

resulting in lamellar-like structure with alternating DITFB-dipyridylurea layers.  
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Table 3.5. Summary table of the packing motifs observed from the SCXRD 

structure of each crystal.  
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CHAPTER 4 

PROBING THE FORMATION OF REACTIVE OXYGEN SPECIES 

BY A POROUS BENZOPHENONE BIS-UREA HOST‡
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4.0 ABSTRACT 

 Herein, we examine the photochemical formation of reactive oxygen 

species (ROS) by a porous benzophenone-containing bis-urea host (1) to 

investigate the mechanism of photooxidations that occur within the confines of its 

nanochannels. UV-irradiation of the self-assembled host in the presence of 

molecular oxygen generates both singlet oxygen and superoxide when 

suspended in solution. The efficiency of ROS generation by the host is lower 

than benzophenone, which could beneficial for reactions carried out catalytically, 

as ROS species react quickly and often unselectively. Superoxide formation was 

detected through reaction with 5,5-dimethyl-1-pyrroline N-oxide in methanol. 

However, it is not detected in CHCl3, as it reacts rapidly with the solvent to 

generate methaneperoxy and chloride anions, similar to its parent 

benzophenone. The lifetime of airborne singlet oxygen (τΔairborne) was also 

examined at the air-solid outer surface of the host and with quenchers loaded to 

probe how they impact the lifetime of singlet oxygen. Finally, we compared the 

efficiency and product distribution of the photooxidation of 1-methyl-1-

cyclohexene with the host as a catalyst in CHCl3, benzene, and benzene-δ6. The 

host mediates the photooxidation in solution and produces primarily epoxide-

derived products.  Interestingly, in CHCl3 two chlorohydrins were also formed, 

reflecting the formation of chloride in this solvent. Studies in benzene afforded 

the epoxide and a tertiary allylic alcohol.  In contrast, UV-irradiation of the 

crystalline hostguest complex in an oxygen atmosphere produced no epoxide 

and afforded high conversion to three products: an enone, a tertiary allylic 
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alcohol, and a diol, which demonstrates the influence of encapsulation on the 

outcome of the reaction. 

4.1 INTRODUCTION 

 Here, we investigate the selectivity and efficiency of reactive oxygen 

species (ROS) photogeneration by a self-assembled benzophenone bis-urea 

macrocycle (host 1) and probe its utility for mediating the photooxidation of 1-

methyl-1-cyclohexene (2) in the solid-state in comparison to suspended in 

solution. Macrocycle 1 presents two benzophenone (BP) photosensitizer units 

covalently attached to two urea groups through methylene bridges resulting in a 

bis-urea macrocycle. Self-assembly through urea hydrogen-bonding interactions 

affords hexagonally packed columnar nanotubes that are activated by heating to 

generate accessible channels that can be readily loaded with guests and applied 

as a nanoreactor for selective photooxidations, Figure 4.1.1,2 

 ROS are employed in a diverse range of applications spanning from 

wastewater treatment to photodynamic therapy for cancer treatment.3-6 ROS are 

generated from simple molecular oxygen (3O2), providing an attractive pathway 

for industrial oxidation  processes  due to  economical  and  environmental  

advantages  over traditional oxidants, which present safety hazards and generate 

stoichiometric amounts of hazardous waste. Molecular oxygen can be activated 

through type I and type II sensitized processes.7,8 The main species formed in 

type II reactions is singlet oxygen (1O2).7 On the other hand, type I reactions 

produce superoxide (O2
•−), which is generated through one-electron reduction of  
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Figure 4.1. Macrocycle 1 is comprised of two BP sensitizer units covalently 

bound through methylene urea groups. Self-assembly through bifurcated urea 

hydrogen-bonding interactions results in the formation of porous host 1 

nanotubes that are capable of generating ROS upon UV-irradiation.  

 
3O2, in addition to a variety of species such as protonated superoxide HO2∙, 

ROO∙, RO∙, and ∙OH.8,9,10  Whereas, 1O2 is generated through a Dexter (triplet) 

pathway when 3O2 interacts with a triplet sensitizer, often generated by visible 

light wavelengths.11-13 While ROS present a green pathway for industrial 

oxidations, achieving high selectivity is challenging due to their inherent 

instability. Strategies to enhance organic selectivity of ROS reactions are under 

active exploration and include templation,14 air-water interfacial effects,15 and 

confinement within nanocavities and channels.1,16,17 

 Herein, we probe the mechanism of ROS generation and evaluate the 

host as a suspended photocatalyst in order to optimize selectivity and conversion 

of industrial photooxidations. Specifically, we examined the scope of ROS 

generated by 1 while suspended in protic methanol (MeOH) versus aprotic 

chloroform (CHCl3). Interestingly, the detection of O2
•− was found to be solvent-

dependent. Both O2
•− and 1O2 were generated in MeOH while the former (O2

•−) 



www.manaraa.com

 

 196 

was not detected in CHCl3 using EPR and a 5,5-dimethyl-1-pyrroline N-oxide 

(DMPO) trap. We determined that the 1O2 quantum yield of 1 while suspended in 

CHCl3 is low, ranging from 1-12%.  Previously, selectivity of photooxidations were 

enhanced when a heterogeneous gas/solid reaction was carried out when the 

host•guest complex was simply UV-irradiated in an O2 atmosphere.1 Thus, we 

also examined the lifetime of airborne 1O2 generated by a 3-phase apparatus 

delivering 1O2 to the air-solid interface of host 1 to gain insight into how the outer 

wall of host 1 impacts the lifetime of 1O2. The quenching of airborne 1O2 was 

compared with the host and triphenylphosphine (Ph3P) to give a sense of the 

outer wall quenching capacity.  

 Finally, with interfacial control of photooxidations desired, we also 

compared the ROS reactivity of 1-methyl-1-cyclohexene (2) in solution versus 

within the crystalline host. Host 1 was suspended as a catalyst in oxygenated 

solutions (CHCl3 and benzene) and the photooxidation of 2 was monitored. 

Overall, photooxidations in solution resulted in multiple products and 

characterization was attempted on only key products. Upon UV-irradiation in 

CHCl3, an epoxide and two chlorohydrins were the key products observed, which 

are atypical for 1O2 oxidations. In contrast, in benzene the epoxide was a primary 

product alongside a tertiary alcohol, which is commonly observed in 1O2 

oxidations. We then examined the photoreactivity of the crystalline host 12 

complex under an O2 atmosphere to see how encapsulation within the 

nanochannels influences the product distribution. In this case, three different 
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products were formed including the enone, a tertiary alcohol, and a diol, 

demonstrating the influence of encapsulation on the outcome of the reaction.  

4.2 RESULTS AND DISCUSSION 

 Host 1 was synthesized as previously reported.1,2,18 Crystallization by slow 

cooling in DMSO (10 mg/mL) affords white needle-like crystals with regular 

channels (10.5Å x 5.2Å) that are filled with DMSO.1,2,18 The host crystals were 

activated by heating to 180 °C using thermogravimetric analysis (TGA) at a ramp 

rate of 4 °C/min.1,2,18 Once activated, the evacuated host can be readily loaded 

with guest molecules by soaking the crystals in guest solutions or through vapor 

diffusion.1,2 Host 1 contains two BP photosensitizer units, which assist in ROS  

 
 

Scheme 4.1. The ground state BP is excited upon UV-irradiation to its singlet-
excited state. Upon intersystem crossing the triplet excited state is formed which 
can interact with oxygen one of two ways: (1) through a triplet-triplet annihilation 
pathway which results in the formation of 1O2 and the reformation of ground state 
BP (2) Through hydrogen abstraction to form a ketyl radical which undergoes 
electron transfer with molecular oxygen to generate O2

•− and subsequently 
ground state BP. Blue Inset: Distribution of electrons in the highest orbitals of 
3∑O2, 1∆O2, and O2

•−.  
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formation, as the parent BP is capable of activating oxygen to generate both 1O2 

and O2
•− (Scheme 4.1).9,19 Superoxide generation by BP involves the formation of 

a ketyl radical, which will then undergo an electron transfer process with 3O2 to 

form O2
•− and subsequently peroxides, resulting in the regeneration of ground 

state BP, Scheme 4.1.9,19,20 Previous work showed that UV-irradiation of the 

crystalline host results in the formation of persistent organic triplet radical pairs 

consisting of a ketyl radical and benzylic radicals in low quantity (~ 1 in 10,000 

molecules).18 Therefore, our hypothesis is that the suspended host will generate 

O2
•−  similarly to the parent BP, although in lower efficiency due to reduced ketyl 

radical production by 1 in the solid-state.  

 How does the host activate O2? Electron paramagnetic resonance 

(EPR) spectroscopy was used to probe the types of ROS generated by host 1 

upon UV irradiation while suspended in solution. EPR is a useful technique for 

detecting ROS due to its high sensitivity and the availability of traps for oxygen 

species.21-23 Singlet oxygen can be readily detected as it reacts with 2,2,6,6-

tetramethylpiperidine (TMP) to form a stable nitroxide radical, 2,2,6,6-

tetramethylpiperidin-1-yl oxidanyl (TEMPO), which gives rise to a signature three-

line EPR spectrum as a function of time.21,23 Hydroxide and O2
•− are ROS that 

are readily detectable by reaction with DMPO, a common spin trap that forms 

distinctive radical adducts (doublet of triplets) with O2
•−, hydroxide, or peroxide 

radicals.21,22 The DMPO-OOH adduct is unstable with a short half-life (~1 min) 

and degrades to form the DMPO-OH adduct.22,23   
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 To investigate if host 1 is capable of generating O2
•−, we carried out a 

DMPO spin trapping study in the presence of MeOH. Literature precedence 

demonstrates that BP activates oxygen to O2
•− in polar protic solvents, most 

commonly alcohols (such as MeOH, ethanol, and 2-propanol).9,19 Host 1 (0.11 

mg, 0.2 μmol) was suspended in benzene and a stock solution of DMPO in 

MeOH was added to prepare a 20 mM solution. The sample was sealed under 

oxygen and EPR spectra were recorded over time of UV irradiation.  Irradiation of 

the host 1 suspension resulted in the gradual formation of a four-line anisotropic 

spectrum. The sample was irradiated for 15 minutes in total (Figure 4.2A). An 

EasySpin simulation of the DMPO adduct formed upon irradiation of the host was 

performed using the garlic package to account for the fast motion regime and is 

consistent with the formation of a DMPO adduct with hyperfine splitting constants 

of aN = 14.2 G and aH = 9.2 G, which is in range of typical DMPO-OOH adducts 

(Figure 4.12).24-26 The experiment was also carried out with BP as the sensitizer 

for comparison. It should be noted that BP is indeed soluble in CHCl3 and 

benzene; therefore, the quenching studies carried out with BP were performed in 

solution. UV-irradiation of BP for 2 min in the presence of DMPO and MeOH 

resulted in modest formation of a four-line spectrum that overlays nicely with the 

spectra obtained by host 1, with aN = 13.8 G and aH = 9.3 G (Figure 4.13). This 

result indicates that in the presence of MeOH, a polar protic solvent, the host can 

in fact generate O2
•−, albeit ~15x slower than BP. UV irradiation of host 1 for 15 

min generates approximately half the amount of O2
•− when compared to parent 

BP after just two min of UV-irradiation.  



www.manaraa.com

 

 200 

 
 
Figure 4.2. EPR studies of host 1 suspended in oxygen saturated solutions of 
O2

•− and 1O2 quenchers. (A) DMPO was used to trap O2
•− in benzene in the 

presence 1 and methanol.  (B) DMPO O2
•− trapping experiment in chloroform in 

the presence 1 (C) TMP was used to chemically quench 1O2 in chloroform and in 
the presence of 1 resulting in the formation of EPR detectible TEMPO over time 
of UV irradiation (D) Comparison of the TMP chemical quenching study with 
different photosensitizers, perinaphthenone was used as the reference and host 
1 was compared to BP in solution. 
 

 To probe the formation of O2
•− by host 1 in CHCl3, the activated host (1.0 

mg, 2.0 μmol) was suspended in a solution of DMPO in CHCl3. Next, the solution 

was bubbled with O2 gas via O2 balloon and the stirring solution was irradiated at 

350 nm in a Rayonet reactor. Aliquots of the DMPO solution (0.1 mL) 

were removed at various time intervals and their EPR spectra recorded to probe 
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for the formation of O2
•−. No signals were observed for the DMPO solution pre or 

post UV-irradiation, indicating no significant amount of O2
•− builds up under these 

conditions (Figure 4.2B). As a control, the same experiment was carried out 

using BP; similarly no formation of O2
•− was detected (Figure 4.15). Roberts and 

Sawyer’s work suggest that O2
•− reacts with CHCl3 to generate methaneperoxy 

(HC(=O)OO−) and chloride anions,27 although radical species cannot be ruled 

out. Our studies indicate that either the [O2
•−] is very low or its reaction with 

CHCl3 is exceedingly efficient, leaving no O2
•− to form an adduct with DMPO.  

 Next, the contribution of 1O2 was investigated by adding activated host 1 

(0.1±0.02 mg) to a Norell Suprasil quartz EPR tube. The sample was suspended 

in a 2.97 mM solution of TMP in CHCl3 (0.2 mL) and the solution was sealed 

under pure O2(g). The solution was then irradiated at 350 nm in a Rayonet 

reactor and EPR spectra were recorded at various time intervals. Upon 

irradiation of TMP and host 1 in the presence of O2 the distinct three-line TEMPO 

EPR signal increased with extended irradiation time, indicating the formation of 

1O2 (Figure 4.2C). In order to compare the efficiency of the two ROS generation 

processes, the area of the EPR spectra obtained during the DMPO spin-trapping 

experiment was compared to the TEMPO experiment in CHCl3 after 15 min of 

irradiation. Interestingly, the areas obtained were very similar (5.8 vs 5.1) with the 

O2
•− adduct generated ~1.1x faster than 1O2.  The production of both O2

•− and 1O2 

by 1 indicates that the host can activate oxygen in two distinct ways.  In the 

absence of a protic solvent, one can reduce O2
•− generation; however, in 

chlorinated solvents this may generate chloride anions. 27 
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 What is the quantum yield of 1O2 generation in solution? How efficient 

is this crystalline host at generating 1O2 versus BP or perinaphthenone?  To 

probe this question, two indirect techniques, EPR and UV-visible spectroscopy, 

were employed to measure the quantum yield of 1O2 generation. Both rely on a 

1O2 quencher whose subsequent oxidation upon irradiation can be monitored by 

the corresponding spectroscopic methods. In each experiment, the sensitizer (1 

or a standard) was added to an oxygen-saturated stock solution containing a 

known quencher such as TMP, which upon reaction with 1O2 affords the stable 

radical TEMPO.  The solution was UV-irradiated at 360 nm in a Rayonet reactor 

and the reaction was monitored over time by EPR spectroscopy. Figure 4.2C 

shows the gradual formation of TEMPO from TMP. The 1O2 quantum yield 

(Φ[1O2]) was determined by plotting the area of EPR signal versus time and 

obtaining the slope of each plot using the equation Φ[1O2]sample = Φ[1O2]ref 

(msample/ mref) where perinaphthenone was used as the reference (Φ[1O2]ref  = 

0.97 in CHCl3 ), msample is the slope of the host plot, and mref is the slope of the 

perinaphthenone plot (Figure 2D).23,28 By this method, we estimate the Φ[1O2]host 

1 to be ~1% in CHCl3 . In some cases, the use of TMP in determining the 

quantum yield of 1O2 production can be misleading when the excited 

photosensitizer is able to react with TMP, resulting in the TMP+.23 The radical 

cation can then undergo a reaction with molecular oxygen to form an EPR-

detectable TEMPO signal that is not attributed 1O2 production.23 While this 

process has been observed by the parent BP it is not anticipated to occur (or be 
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minimal at best) with the host because TMP is too large to fit into the host 

channels (Table 4.3). 

  The quantum yield of 1O2 generation was also measured by UV-vis 

spectroscopy to further complement the EPR findings. UV-vis is a common 

indirect method for determining the quantum yield of 1O2 generation and is 

carried out using a chromophore that reacts directly with 1O2, which is monitored 

by the decrease in absorbance.29-32 Typical 1O2 quenchers for detection by UV-

vis include 9,10-diphenylanthracene and 1,3-diphenylisobenzofuran, which are 

known to absorb and generate 1O2 at the same wavelength as the host 1 

sensitizer (~360 nm).29-32  Thus, we selected 1,4-dimethylnaphthalene (DMN), a 

1O2 trap that absorbs at higher energy wavelengths (~290 nm) than the 360 nm 

required for 1. A 2.86 mM stock solution of quencher was prepared and activated 

host 1 (1.1 mg, 0.13mM) was suspended in the stock solution and sealed under 

pure O2. The sample was UV-irradiated with stirring in a room temperature water 

bath and UV-vis carried out at over time.  

 Figure 4.3 shows the decrease of the DMN absorbance signal with time of 

irradiation, indicating that the DMN reacts with 1O2 to form its corresponding 

endoperoxide product, which does not absorb in this region. The 1O2 quantum 

yield (Φ[1O2]) was determined by plotting the difference between each 

absorbance signal versus time and obtaining the slope of each plot using the 

quation Φ[1O2]sample = Φ[1O2]ref(msample/mref) where methylene blue was used as 

the reference (Φ[1O2]ref  = 0.52 in CHCl3), msample is the slope of the host plot, mref 

is the slope of the methylene blue plot. From these data, we calculated the  
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Figure 4.3. Indirect quantification of the quantum yield of 1O2 generation by host 

1 by monitoring the absorption loss of DMN. (A) An oxygen-saturated solution of 

DMN was irradiated in the presence of host 1 and the absorbance spectra was 

recorded over time to monitor the loss of DMN. (B) Area of UV absorbance 

plotted versus time of UV-irradiation for host 1.  

 

Φ[1O2]host 1 to be 12% in CHCl3  via UV-vis spectroscopy.31,32  We note that 1,4-

dimethylnaphthalene-1,4-endoperoxide has a half-life (t1/2) of 5 hours at 25 °C 

and can serve as a chemical source of 1O2
33,34 however this 1O2 release was 

relatively low on the timescale of our quantum yield measurements. Furthermore, 

it is not surprising that the Φ[1O2]  varies between the two techniques, as they 

show different sensitivity.29 Given these results, we conclude the host generates 

low quantities of 1O2 with Φ[1O2]host 1 ranging from 1-12%. The low 1O2 quantum 

yield could be advantageous for suspended host catalytic studies, as it may 

encourage oxidations to occur within the confines of the host channels as 

opposed to free in solution. 

 What is the lifetime of 1O2 at the air-solid interface? The lifetime of 1O2 

(τΔ) is influenced by its local environment, especially when comparing its lifetime 

in air to its lifetime in solution.35,36 This is because 1O2 is known to undergo 
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physical (or chemical) quenching as a result of its medium.37,38 Previously, high 

selectivity was reported for the photooxidation of 2-methyl-2-butene in crystalline 

complexes with host 1.1 Thus, we next investigated the lifetime of 1O2 at the air-

solid interface of the host crystals. In the following phosphorescence studies, the 

lifetime reduction of 1O2 by the 1DMSO complex and by triphenylphosphine 

(Ph3P) were measured. Solid Ph3P was used as a comparison because 

phosphines are well-known chemical quenchers of 1O2 in the solution phase.12 

The lifetimes were then compared to the lifetime of 1O2 in the presence of no 

solid.  The 1DMSO complex was obtained through recrystallization of 1. A series 

of quenchers were loaded in the channel including N,N-dimethyl aniline, pyridine, 

and N,N,N’,N’-tetramethylethane-1,2-diamine (Table 4.3). For example, the host 

was activated by heating and the pyridine was loaded via vapor diffusion. The 

1pyridine complex exhibited a host:guest ratio of 2:1.   

  Figure 4.4 shows the simplified experimental set up, in which an  

 
 
Figure 4.4. Measurement of the 1O2 lifetime at the air-solid interface. (A) 
Simplified experimental set up, consisting of a sensitizer plate used to generate 
singlet oxygen whose lifetime was measured by a photomultiplier tube through a 
1270-nm bandpass filter. (B) Table of the experimental 1O2 lifetimes obtained in 
this study.  
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apparatus was constructed to deliver airborne 1O2 to a solid quenching agent. 

The reactor consisted of a sensitizing glass plate made by depositing Al(III) 

phthalocyanine tetrasulfonate (AlPcS) (~5 × 10-5 mol) onto the bottom side of a 

porous silica square (0.50 g, shape: 1.0 mm × 2.25 cm2). A 0.8 mM solution of 

AlPcS in MeOH was deposited on the bottom face of the plate via slow 

evaporation. The glass plate was placed sensitizer-face down on top of a 

custom-made plate containing a well (sized: 1 mm × 1 cm × 1 cm). The solid 

trapping agent (10 mg) was placed in the well. The sensitizer plate was not in 

contact with the solid trapping agent and sat above it by 0.1 mm. A digital ruler 

with a precision of 0.01 mm was used to measure the distance between the 

sensitizer plate and the solid trapping agent in the well. The sensitizer plate was 

placed 3.0 cm below a terminus of a multimode FT-400-EMT optical fiber with an 

SMA 905 connector (Thorlabs, Inc). The optical fiber was connected to a 630-nm 

light source from a Nd:YAG Q-switched laser pumping an optical parametric 

oscillator (OPO) producing 5-ns ~0.2 mJ/pulses. The output of the 630-nm light 

from the laser yielded incident photons in a Gaussian distribution upon the 

sensitizer plate. The 1O2 luminescence was detected by a photomultiplier tube 

(H10330A-45, Hamamatsu Corp.) through a 1270-nm bandpass filter (FWHM = 

15 nm). The 1O2 luminescence signals were registered on a 600 MHz 

oscilloscope and the kinetic data for the 1O2 lifetime (τΔairborne) was determined by 

a least-squares curve-fitting procedure. The 1O2 decay was observed in the 1270 

nm phosphorescence upon irradiation of the sensitizer particles with 630 nm 

light. A slow component for the 1O2 signal was observed (tenths of 
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microseconds), which is attributed to airborne 1O2 in the air gap between the 

sensitizer plate of origin and the solid trapping agents. A reduction of the 1O2 

lifetime (τΔairborne) arises when the 1O2 encounters the air/solid interface of the 

trapping agent.    

 The 1O2 lifetime was observed in the 1270 nm phosphorescence range 

upon irradiation of the sensitizer particles with 630 nm light. We find the lifetime 

of airborne 1O2 (τΔairborne) generated by the apparatus to be ~150 µs and thus 

longer compared to 1O2 solvated in benzene and toluene by ~5-fold (31 µs and 

29 µs, respectively), and MeOH and ethanol by ~15-fold (10 µs and 13 µs, 

respectively).39 The lifetime of 1O2  in DMSO is 30 µs, but is reduced in pyridine 

(5.7 µs).39 The total quenching rate constant (kT) for Ph3P is 8.5 × 106 M-1 s-1 and 

for other phosphines range from 0.1-2.0 × 107 M-1 s-1.40-42 The table in Figure 4 

shows that the τΔairborne is reduced going from a sample absent of a solid trapping 

agent (~0.15 ms), to a sample containing solid host 1 (with DMSO or pyridine 

guests; 0.13 and 0.12 ms, respectively) and solid Ph3P (0.10 ms).  Other 

quenchers showed similar lifetimes (Figure 4.28).  These data are in-line with 

quenching of 1O2 in the solution phase. We attribute the decrease to be sensitive 

to factors such as the high oxophilicity of Ph3P in solid-surface physical and 

chemical quenching. That is, once the 1O2 was carried from the sensitizer plate to 

the air/solid interface of the solid host or solid Ph3P, it was mainly physically 

quenched to 3O2. In previous work, long and short 1O2 lifetimes were found 

depending whether it resided within a gas bubble or in the bulk aqueous 

solution.43 In a gas bubble, a 1O2 lifetime of 0.98 ms has been previously 
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observed.43 Seeing that the lifetime of 1O2 in air is decreased in the presence of 

the host in comparison to the Pc Plate or in a gas bubble, we wanted to next 

investigate ROS formation by the interior of the host.    

 Can host 1 be used as a catalyst to perform selective 

photooxidations in solutions? The oxidation of 1-methyl-1-cyclohexene (2) 

was used as a model reaction to test if host 1 can mediate its photooxidation in 

solution and in the solid state. Cyclohexene 2 is a good match for the size and 

shape of the host 1 channel and its oxidation has been studied with other 

sensitizers and nanoreactors. The Schenck “ene” reaction of 2 and 1O2 in 

solution forms three key peroxides.16,44-47 The proposed “ene” mechanism 

involves UV-irradiation of an oxygen-saturated solution of an alkene and a 

photosensitizer to first activate 3O2 to 1O2 through a triplet-triplet annihilation 

pathway. The alkene is thought to react with 1O2 through a [2+2] cyclization step 

to form a perepoxide transition state, which subsequently undergoes ring 

opening to form peroxide-containing products that can be reduced to their 

corresponding alcohols.45,47 With sensitizers (porphyrin or rose Bengal), 

photooxidations of 2 in solution forms three allylic alcohols products (Table 4.1, 

Entry 3-4, products 3-5). Host 1 was employed under catalytic conditions in 

solution, where we were expecting similar products. The cycloalkene 2 (21 mM) 

was stirred in oxygenated CHCl3 with host 1 (2 mg, 20 mol%). The suspensions 

were UV-irradiated for 18h and diluted with CH2Cl2 solutions of 

triphenylphosphine (21 mM) for rapid analysis. Relative conversion and 

selectivity were obtained by gas chromatography-mass spectrometry (GC-MS) 
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Table 4.1. Product Distributions in Photosensitized Oxidation of Alkenes.  

aRose-Bengal sensitized photooxidations irradiated for 4 h at rt, with octa acid 
nanocapsules (in D2O) and without (in acetonitrile).16  btetraphenylporphyrin 
irradiated for  3 h at 0°C.40  ctetraphenylporphrin-sensitized photooxidation in 
dichloromethane with zeolite irradiated for  1 h at rt.41  dOxidation catalyzed by 
Fe(III)/SiO2 in acetonitrile for 10 hours.47 

 

and the products were confirmed using standards and/or the NIST database and 

literature when applicable (Figures 4.24-2.27). Surprisingly, host 1 facilitated the 

high conversion of the alkene (92%) to afford three different products (Table 4.1, 

Entry 3): the epoxide 6 (21%) and two chlorohydrin constitutional isomers 7 

(24%) and 8 (16%). Other minor products made up a total of 39% according to 

the GC trace consisting mainly of enones and ketones (Figure 4.24). 

Mechanistically, it is likely that the chlorohydrins arise from ring opening of 

epoxide 6, or a related perepoxide, by the chloride anion. Epoxide-containing 

products have been reported in 1O2 mediated photooxidations of cycloalkenes 

and are believed to be the result of either 1O2 or radical pathways.50 Literature 

reports the lifetime of 1O2 as 207 μs in CHCl3.39
 Our results suggest that both 1O2 

and O2
•− are generated under these conditions.  Subsequently, O2

•− reacts with 

CHCl3 to generate the chloride species, consistent with the EPR trapping 
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experiments.24 Thus, chlorinated solvents are not advisable for photooxidation 

reactions that generate significant amounts of O2
•−.  

 Next, we examined the reaction under similar conditions in benzene and 

benzene-δ6 solutions, which do not react with O2
•−. The lifetime of 1O2 in these 

solvents differs 25-fold, from 30 µs in benzene to 731 µs in the deutero 

benzene.36 Aliquots (50 μL) of the reaction mixture were removed over time (4, 8, 

and 12 h), diluted into solutions of triphenylphosphine, and analyzed by GC-MS 

(Table 4.2).  In general, the epoxide 6 was observed at all reaction times and 

similar selectivity was seen for two additional alcohols 3 and 5  (Figure 4.27). 

Both alcohols are commonly observed through a 1O2 pathway and also reported 

under nanoconfinement (Table 4.1, entries 5 & 6).16 Epoxide 6 has been 

observed in oxidations of 2 by enzyme P450 and by a fungal heme-thiolate 

protien.48,49 Surprisingly, the 25-fold difference in 1O2 lifetime did not significantly 

 

 

 

Table 4.2. Product Distributions in 

Photosensitized Oxidation of Alkenes in Benzene 

overtime 
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influence the conversion or product distribution. In summary, when employed as 

a suspended catalyst in solution, host 1 mediated solvent-dependent 

photooxidations and showed markedly different product distributions as 

compared with other triplet sensitizers. 

 To investigate the selectivity of this reaction within the nanochannels of 

host 1 in the solid-state, the activated host was equilibrated with 2 for at least 24 

h.  TGA of the host 12 complex displayed a one-step desorption from 25-80 °C 

with a weight loss of 8.2% (Figure 4.23 and Table 4.3). The hostguest 

stoichiometry was calculated from the weight loss and corresponded to a 2:1 

host:guest ratio.  Because the TGA indicates that alkene 2 slowly desorbs from 

the host at ambient temperature, all solid-state reactions were performed at lower 

temperatures (0 °C).  

 The crystalline complex (~16 mg) was UV-irradiated in a borosilicate vial 

saturated with oxygen for 5 h at 0 °C. After irradiation, the complex was 

immediately sonicated in a solution of triphenylphosphine (21 mM in THF) and 

analyzed by GC-MS (Table 4.1, entry 2). Compared with solution studies, the 

oxidation in the confined channels proceeds with higher conversion of 2, 97% 

after 5 h vs ~ 30% after 8 h in solution.  Three major products were formed: 

enone 10 (42%), tertiary alcohol 5 (32%), and diol 9 (13%). Unlike the solution 

studies, no epoxide was observed. The products enone 10 and diol 9 are not 

typically formed in photosensitized processes. In comparison, reaction of 2 in the 

Gibb’s Octa Acid capsule favors the tertiary alcohol 5 with 90% selectivity at 60% 

conversion (Table 4.1, Entry 5).16 While adsorption of 2 into a ZSM-5 zeolite 
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results in the secondary allylic alcohol 3 with 88% selectivity (Table 4.1, Entry 

6).46  The unexpected diol 9 observed within our crystalline host has also been 

reported in the oxidation of 2 by enzyme P450.48,51 Enone 10 has been observed 

in porous silica-supported iron complexes of 2 (Table 4.1, Entry 7) and is 

postulated to form when triplet oxygen binds with iron adhered silica 

nanoparticles to form a O2
•− complex.52 Based off of these products, we 

hypothesize that both ROS (1O2 and O2
•−) are produced within the channels of 1. 

The difference in products observed in the crystalline host 1•2 complex versus in 

solution is striking and suggests a fundamental difference in the reaction 

mechanism.   

4.3 CONCLUSIONS 

 In summary, we investigated ROS that were generated upon UV-

irradiation of a porous BP bis-urea host in oxygenated solution as well as under 

an oxygen atmosphere in the solid-state. Overall, assembly of BP units into 

columnar structures reduces the production of ROS as compared to the parent 

BP in solution. While suspended in solution, the solid-state host was found to 

produce similar quantities of both O2
•− and 1O2. The quantum yield of 1O2 

production was estimated to be ~5% as determined by indirect methods. The 

detection of O2
•− was found to be solvent-dependent, as it initiated degradation of 

CHCl3 to form chloride species. Therefore, it is important to avoid the use of 

chlorinated solvents when examining the formation of O2
•− by photosensitizers.  

 The lifetime of airborne 1O2 was also examined at the air-solid outer surface of 

the host.  Airborne 1O2 was generated by a Pc-plate that was physically isolated 
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from the host in the solid state. Minimal reduction in the lifetime of airborne 1O2 

was observed when it came in contact with the surface of host 1. Experiments 

were carried out with quenchers loaded within the host 1 channels. However, all 

displayed similar lifetime of airborne 1O2, suggesting that quenching is a surface 

phenomenon and this species does not access the channel interior under these 

conditions.  Thus, we propose that ROS species involved in the air/solid 

reactions are primarily generated within the confined channels of the host. 

 Finally, photooxidation of cyclohexene 2 was used as a model reaction to 

probe utility of host 1.  First, host 1 was tested as a catalyst (20 mol %) in 

solution for the photooxidation reaction of 2 (21 mM) in CHCl3, benzene, and 

benzene-δ6. Despite a large variation of the 1O2 lifetime from 30 µs to 731 µs in 

these solvents, catalytic trials with host 1 produced primarily epoxide-derived 

products. Interestingly, in CHCl3 two chlorohydrins were also formed, which 

reflects degradation of the solvent by O2
•−. Studies in benzene afforded the 

epoxide and a tertiary allylic alcohol. The formation of the epoxide as a key 

product in the photooxidations reflects the proposed perepoxide transition state 

in 1O2 mediated photoreactions.  

 In contrast, UV-irradiation of the crystalline hostguest complex in an 

oxygen atmosphere produced no epoxide and afforded the tertiary allylic alcohol 

with two surprising products, an enone and a diol.  These are more typical of O2
•− 

mediated enzymatic processes.  Thus, we hypothesize that both 1O2 and O2
•− are 

produced within the channels of 1. These represent key reactive species formed 

in the type I and type II mechanisms and it would be advantageous to be able to 
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select a single ROS to direct more selective photooxidations.  The reactions 

carried out in the air/solid and solution/solid interfaces suggest that selectivity 

arises mainly in the interior of the host.  This is likely a result of confinement 

and/or limited mobility within the columnar channels in comparison to reactions 

carried out in solution.  We are currently investigating the use of molecular 

dynamics to probe complexes of host 1 with O2
•− and 1O2 to see if these ROS 

species diffuse freely or adhere to the walls.  We are also investigating conditions 

to favor control over the selectivity of ROS generation within the host channels as 

well as evaluating the scope of photooxidations mediated by 1. 

4.4 FUTURE WORK 

 Future work will focus on loading more guests inside the cavity and 

examining the photoreactivy. The photooxidations are the straightforward choice 

but photodimerizations and polymerizations could be explored within the confines 

of the nanochannels. Molecular dynamic computations are also of interest to 

determine if there is unique organization within the host channels that leads to 

the distinct selectivity.  Finally, it is of interest to examine the photooxidations in 

flow, can we optimize the photooxidation process as a work around to the low 

amounts of host we are able to synthesize at any given time?  

4.5 EXPERIMENTAL 

GENERAL METHODS: All chemicals were purchased from Sigma 

Aldrich, VWR, or TCI Inc. and were used without further purification unless 

specified. 1H-NMR spectroscopy in solution was performed on a Bruker Avance 

III HD 300 NMR spectrometer. Samples were weighed out using a Mettler Toledo 
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XPE206DR milligram balance. UV-irradiation of host 1 was carried out in a 

Rayonet RBR-200 UV reactor at 350 nm using RPR-3500A lamps in borosilicate 

vials or in quartz tubes. Thermogravimetric analysis (TGA) was carried out using 

TA instruments SDT-Q600 at a rate of 4º/min from 25-180 ºC (unless otherwise 

specified) with 15 min isotherms before and after temperature increase. 

Absorption spectra were recorded on a Molecular Devices Spectramax M2.  GC-

MS was carried out using Thermo Scientific (Waltham, MA) TRACE GC Ultra gas 

chromatograph coupled to a TSQ Quantum GC triple quadrupole mass 

spectrometer. Electron ionization mass spectral data was acquired in full scan 

mode of the first quadrupole from 33 to 650m/z. Samples were splitless-injected 

(1 µL) and an Rxi-5ms column (30 m x 0.25 mm x 0.25 µm) from Restek 

Corporation was used for chromatographic separations. The GC inlet was 

maintained at 250 °C, with a helium flow rate of 1.2 mL/min. The transfer line and 

ion source were maintained at 280 and 200 °C, respectively. The GC oven was 

held at 35 °C for 2 min, then ramped to 100 °C at a rate of 5 °C/min, followed by 

a second ramp at 20 °C/min to a final temperature of 300 °C and held for 15 min. 

EPR STUDIES: EPR experiments were performed using a Bruker EMX 

plus equipped with a Bruker X-band microwave bridgehead and Xenon software 

(v 1.1b.66). All spectra were recorded using identical parameters at a power of 

1.589 mW and modulation amplitude of 1.0 G. The double integration to obtain 

peak areas was performed three times and averaged in the Xenon software. 

Samples were sealed under pure 3O2(g) and UV-irradiated in Norell Suprasil 

Quartz EPR tubes.  
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AIRBORNE 1O2 LIFETIME MEASUREMENTS: An apparatus was 

constructed to deliver airborne 1O2 to a trapping agent at its air/solid interface. 

The reactor consisted of a sensitizing glass plate made by depositing Al(III) 

phthalocyanine tetrasulfonate (AlPcS) (~50 μmol) onto the bottom side of a 0.50 

g porous silica square (shape: 1.0 mm × 2.25 cm2). A methanol solution 

containing 0.8 mM of AlPcS was used to deposit the sensitizer on the bottom 

face of the plate, after which the methanol had evaporated after 0.5 to 1 day at 

25 °C. The glass plate was placed sensitizer-face down on top of a custom-made 

plate containing a well (sized: 1 mm × 1 cm × 1 cm). Approximately 10 mg of 

solid trapping agent was placed in the well. The sensitizer plate was not in 

contact with the solid trapping agent and sat above it by 0.1 mm. A digital ruler 

with a precision of 0.01 mm was used to measure the distance between the 

sensitizer plate and the solid trapping agent in the well. The sensitizer plate was 

placed 3.0 cm below the terminus of a multimode FT-400-EMT optical fiber with 

an SMA 905 connector (Thorlabs, Inc). The optical fiber was connected to a 630-

nm light source from a Nd:YAG Q-switched laser pumping an optical parametric 

oscillator (OPO) producing 5-ns ~0.2 mJ/pulses. The output of the 630-nm light 

from the laser yielded incident photons in a Gaussian distribution upon the 

sensitizer plate. The airborne 1O2 luminescence was detected by a 

photomultiplier tube (H10330A-45, Hamamatsu Corp.) through a 1270-nm 

bandpass filter (FWHM = 15 nm). The airborne 1O2 luminescence signals were 

registered on a 600 MHz oscilloscope and the kinetic data for the airborne 1O2 
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lifetime (τ∆airborne) was determined by a least-squares curve-fitting with a nonlinear 

least-squares procedure in Origin Software.43  

 

General Synthetic Procedure 
 

 
 
 
 
Scheme 4.2. Host 1 was synthesized as previously reported.1-2, 18 Commercial 
4,4’-dimethylbenzophenone was brominated with N-bromosuccinimide (NBS) 
using 2,2’-azobis(isobutyronitrile) (AIBN) as an initiator in CHCl3 to yield 4,4’-
bis(bromomethyl)benzophenone. The brominated benzophenone was then 
cyclized with triazinanone and NaH in refluxing THF to form the protected 
macrocycle, which was subsequently deprotected in an acidic diethanol amine 
aqueous/methanol mixture to afford the desired macrocycle 1.  
 

 

Preparation of Deprotection Solution: A mixture of diethanol amine (20 

mL) and deionized water (50 mL) was adjusted to pH 2 via drop-wise addition of 

12.1 N HCl. The pH was monitored via litmus paper. 
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Synthesis of 4,4’-bis(bromomethyl)benzophenone  

 

 

 

 

4,4’-dimethylbenzophenone (2.00 g, 9.51 mmol, 1 eq) was dissolved in 

chloroform (30 mL). Next, N-bromosuccinimide (NBS, 4.23 g, 23.8 mmol, 2.5 eq) 

and azobisisobutyronitrile (AIBN, 0.01 g, 0.06 mmol, 0.01 eq) were added, and 

the reaction mixture was heated at reflux under N2 for 18 h. Excess AIBN (~2 

mg) and NBS (~30 mg) were added to the reaction mixture, which was stirred for 

a further two hours to push the reaction to completion. The reaction was cooled 

to room temperature and succinimide was extracted with DI water (3x50mL) and 

the chloroform layer was dried under MgSO4. Silica gel was added, and the 

solvent was removed under vacuum and loaded onto a silica gel column packed 

with hexanes. The product was isolated via column chromatography mixture as 

the last spot to yield a white solid, the column was performed using a gradient of 

hexanes and ethyl acetate, beginning with pure hexanes and slowly tapering to a 

9:1 hexanes: ethyl acetate mixture (57%). 1H-NMR: (300 MHz; CDCl3) δ=7.78 

(4H, d, J=8.1), 7.51(4H, d, J=8.4), 4.54 (4H, s).  
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Figure 4.5. 1H NMR of 4,4’-bis(bromomethyl)benzophenone in CDCl3. 

Synthesis of protected bis-urea benzophenone macrocycle 1 

 

 

 

 

 

To a dry round bottom flask, still-dried THF (400 mL) was added. Next, 

triazinanone (0.86 g, 5.43 mmol) and NaH (60 % suspension in mineral oil, 0.88 

g, 21.72 mmol) were added. The mixture was heated to reflux under N2 

atmosphere for two hours. The suspension was cooled to room temperature and 

a solution of 4,4’-bis(bromomethyl)benzophenone (2.01 g, 5.43 mmol in dry THF 
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(100 mL) was added to the stirring mixture all at once. The mixture was then 

heated to reflux for 48 h. Next, the reaction mixture was cooled to room 

temperature, neutralized with 1N HCl (~10 mL), and diluted with water (100 mL). 

THF was then removed under vacuum until an aqueous suspension remained. 

Crude product was extracted with methylene chloride (3 x 100 mL), washed with 

brine (150 mL), and dried with anhydrous Mg2SO4. Product was purified via flash 

silica gel column chromatography (9:1 ethyl acetate: methanol). Column fractions 

were left to evaporate for 3-7 days and a white precipitate was collected and 

dried under vacuum to yield a white solid. (0.16 g, 8%). 1H-NMR (300 MHz, 

CD2Cl2) δ 7.81 (d, J = 8.3, 8H), 7.46 (d, J = 8.3, 8H), 4.65 (s, broad, 8H), 4.35 (s, 

8H), 1.07 (s, 18H).  

 

Figure 4.6. 1H NMR of protected benzophenone bis-urea macrocycle 1 in 

CD2Cl2. 
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Deprotection of protected benzophenone bis-urea macrocycle (1) 

Triazinanone protected bis-urea benzophenone macrocycle (0.200 g, 0.28 

mmol) was added to 1:1 v/v mixture of the deprotection solution (70 mL) and 

methanol (70 mL) was refluxed as a suspension for 48 h. The precipitate (varying 

in color from yellow to white) was collected via vacuum filtration and was washed 

with 1N HCl (20 mL), distilled water (3 x 100 mL), and dried under vacuum (0.135 

g, 92%). 1H-NMR (300 MHz, DMSO-δ6) δ 7.75 (d, J=8.3, 8H), 7.43 (d, J=8.3, 

8H), 6.82 (t, J= 6.2, 4H), 4.38 (d, J= 5.9, 8H)  

 

Figure 4.7. 1H NMR of benzophenone bis-urea macrocycle 1 in δ6-DMSO. 
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Figure 4.8. Space filling model of 1 obtained from 

the crystal structure18 showing the dimensions of the 

host channels measured from carbon to carbon. 

Figure 4.9. Self-assembly of macrocycle 1 

results in the formation of needle-like 

crystals upon recrystallization in DMSO. 

Picture taken at 60x magnification with a 

LED pocket microscope.  
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Decolorization of DMPO using methanol 

After the DMPO spin trapping study in chloroform the DMPO began to turn 

orange in color accompanied by a three line spectrum (aN=15G), indicating the 

formation of a DMPO degradation product. Therefore, before the spin trapping 

study was carried out in methanol it was decolorized to remove the impurities. A 

traditional decolorization technique was carried out in methanol instead of water 

and produced similar results.53 A 200 mM stock solution of DMPO was prepared 

by adding DMPO (22 μL) to a volumetric flask and was diluted to 1 mL with 

oxygenated methanol. Activated charcoal was added to the stock solution, which 

was decolorized by passing it through a 20μm syringe filter.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. Decolorization of DMPO in 

MeOH, (Top) Solution before and after 

decolorization (Bottom) Sample under UV-

light before and after decolorization. 
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Host 1 Superoxide Spin Trapping Experiment (Methanol)  

Activated host 1 (0.11 mg, 0.2 μmol) was added to a Norell Suprasil quartz 

EPR tube. Next, the decolorized 200 mM stock solution of DMPO was further 

diluted to 20 mM into the EPR tube with oxygenated benzene using volumetric 

syringes. The EPR tube was further purged with oxygen for 2 minutes and 

sealed. An EPR spectrum was recorded pre-irradiation, the sample was then 

irradiated in a Rayonet UV reactor at 360 nm and EPR spectra were recorded 

over time.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. EPR spectra of host 1 in the presence of DMPO and 

methanol recorded over time of UV-irradiation. 
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Easy Spin simulation of DMPO adduct  

The EPR spectrum obtained by the DMPO spin trapping experiment was 

simulated using the MATLAB EasySpin toolbox with the “garlic” package to 

account for the fast motion regime at 298K with a rotational correlation time of 

1x10-8 seconds. The simulation is consistent with the formation of a DMPO 

adduct with an isotropic g-value of 2.0072 (PAS Components [2.0149, 2.0057, 

2.0009]) and hyperfine splitting constants of aN = 14.2 G and aH = 9.2 G which is 

in range of typical DMPO-OOH adducts. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. EPR spectral simulation (black line) of the DMPO adduct 

formed in the presence of host 1 and methanol recorded over time of 

UV-irradiation compared to the experimental spectra (blue line).  
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Benzophenone Superoxide Spin Trapping Experiment (Methanol)  

Benzophenone (0.029 mg, 0.16 μmol) was added to a Norell Suprasil 

quartz EPR tube. Next, the 200 mM stock solution of DMPO was further diluted 

to 20 mM into the EPR tube with oxygenated benzene using volumetric syringes. 

The EPR tube was purged with oxygen for 2 minutes and sealed. An EPR 

spectrum was recorded pre-irradiation, the sample was then irradiated in a 

Rayonet UV reactor at 360 nm and EPR spectra were recorded over time. The 

EPR spectrum obtained by the DMPO spin trapping experiment was simulated 

using the same procedure on page 229. The simulation is consistent with the 

formation of a DMPO adduct with an isotropic g-value of 2.0076 (PAS 

Components [2.0159, 2.0060, 2.0009]) and hyperfine splitting constants of aN = 

13.8 G and aH = 9.3 G which is in range of typical DMPO-OOH adducts.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. EPR spectral simulation (blue line) of the DMPO 

adduct formed in the presence of benzophenone and methanol 

recorded over time of UV-irradiation compared to the 

experimental spectra (red line). *indicates quartz EPR tube 

impurity at a g-value of 2.002. 
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Host 1 Superoxide Spin Trapping Experiment (Chloroform)  

Host 1 (1.0 mg, 2.0 μmol) was added to borosilicate vial fitted with PTFE 

septum. A 0.0221 M solution of DMPO was prepared by adding DMPO (62 μL) to 

a 25 mL volumetric flask and diluted with chloroform. The DMPO solution was 

sparged under pure oxygen for 15 minutes, the volumetric flask was topped off 

with chloroform. The stock solution (20 mL) was added to the vial containing host 

1 was added with a micro stir bar. The sample was irradiated for one hour with 

gentle stirring and aliquots of the DMPO solution (0.2 mL) were removed over 

time and EPR spectra were recorded. No DMPO adduct was formed after 1 hour 

of UV irradiation indicating that in polar aprotic solvents host 1 cannot form 

peroxides. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14. EPR spectra of host 1DMPO in chloroform 

recorded over time of UV-irradiation. 
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Benzophenone Superoxide Spin Trapping Experiment (Chloroform)  

Benzophenone (0.7 mg, 3.8 μmol) was added to borosilicate vial fitted with 

PTFE septum. A 0.0221 M solution of DMPO was prepared by adding DMPO (62 

μL) to a 25 mL volumetric flask and diluted with chloroform. The DMPO solution 

was sparged under pure oxygen for 15 minutes, the volumetric flask was topped 

off with chloroform. The stock solution (20 mL) was added to the vial containing 

benzophenone was added with a micro stir bar. The sample was irradiated for 

one hour with gentle stirring and aliquots of the DMPO solution (0.2 mL) were 

removed over time and EPR spectra were recorded. No DMPO adduct was 

formed after 1 hour of UV irradiation indicating that in polar aprotic solvents BP 

cannot form peroxides. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15. EPR spectra of BPDMPO in chloroform 

recorded over time of UV-irradiation. *indicates a quartz EPR 

tube impurity at a g-value of 2.002. 
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Host 1 Singlet Oxygen Trapping Experiment (Chloroform)  

 

 

 

Host 1 (0.1±0.02 mg, 0.18 μmol) was added to a Norell Suprasil quartz 

EPR tube. A 2.9 mM stock solution of TMP was prepared by adding TMP (25 μL) 

to a 50 mL volumetric flask and was diluted with oxygenated chloroform. The 

stock solution (0.2 mL) was added to the EPR tube and sealed under oxygen. An 

EPR spectrum was recorded pre-irradiation and each sample was then UV 

irradiated and spectra were recorded over time. The sample was irradiated in a 

Rayonet UV reactor over time, resulting in the formation of the signature 3-line 

TEMPO signal. 

 

Figure 4.16. (A) EPR spectra of Host 1TMP in chloroform recorded over time of 

UV-irradiation showing the formation of the signature TEMPO EPR spectra. (B) 

Area of the TEMPO EPR spectra plotted versus time of UV-irradiation. The error 

bars represent the standard deviation between the triplicates.  
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Benzophenone Singlet Oxygen Trapping Experiment (Chloroform)  

 

 

 

A 2.97 mM stock solution of TMP was prepared by adding TMP (25 μL) to 

a 50 mL volumetric flask and was diluted with oxygenated chloroform. The TMP 

stock solution (20 mL) was added to a 40 mL borosilicate vial with a PTFE 

septum followed by benzophenone (0.7 mg, 3.8 μmol). The solution was 

vortexed and oxygenated for 5 more minutes. The oxygenated solution (0.2 mL) 

was added to the EPR tube and was sealed under oxygen. An EPR spectrum 

was recorded pre-irradiation and each sample was then UV irradiated and 

spectra were recorded over time. The sample was irradiated in a Rayonet UV 

reactor over time, resulting in the formation of TEMPO.  

 

Figure 4.17. (A) EPR spectra of BPTMP in chloroform recorded over time of 

UV-irradiation showing the formation of the signature TEMPO EPR spectra. (B) 

Area of the TEMPO EPR spectra plotted versus time of UV-irradiation.  
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Perinaphthenone Singlet Oxygen Trapping Experiment (Chloroform)  

 

 

 

A 2.97 mM stock solution of TMP was prepared by adding TMP (25 μL) to 

a 50 mL volumetric flask and was diluted with oxygenated chloroform. The TMP 

stock solution (20 mL) was added to a 40 mL borosilicate vial with a PTFE 

septum followed by benzophenone (0.47 mg, 3.9 μmol). The solution was 

vortexed and oxygenated for 5 more minutes. The oxygenated solution (0.2 mL) 

was added to the EPR tube and was sealed under oxygen. An EPR spectrum 

was recorded pre-irradiation and each sample was then UV irradiated and 

spectra were recorded over time. The sample was irradiated in a Rayonet UV 

reactor over time, resulting in the formation of TEMPO.  

Figure 4.18. (A) EPR spectra of PNTMP in chloroform recorded over time of 

UV-irradiation showing the formation of the signature TEMPO EPR spectra. (B) 

Area of the TEMPO EPR spectra plotted versus time of UV-irradiation.  
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Singlet Oxygen Quantum Yield Determination – EPR  

Figure 4.19. Comparison of area obtained in the formation of TEMPO for 

perinaphthenone, benzophenone, and host 1 spectra plotted versus time of UV-

irradiation, the slopes were used to determine singlet oxygen quantum yield. 

Perinaphthenone was used as the reference.  

 

Φ[1O2]host 1 = Φ[1O2]PN (mhost 1/ mPN)  (Eq’n 4.1) 

Φ[1O2]host 1 = 1% 

Where, mhost 1 = slope of host plot = 0.3859 

mPN = slope of reference plot = 44.442 

Φ[1O2]PN = quantum yield of reference = 0.97 

Φ[1O2]host 1 = quantum yield of host 1 
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Singlet Oxygen Quantum Yield Determination via UV-vis 

 

 

 

 

Activated host 1 (1.1 mg) was added to a stock solution of 1,4-

dimethylnaphthalene in CHCl3 (16 mL of a 2.86 mM soln) in a vial with septum 

and purged under an O2 balloon for 10 minutes.  The sample was UV-irradiated 

in a Rayonet reactor with gentle stirring in a room temperature water bath for 70 

min.  Samples (0.1 mL) were removed at 10 to 20 minute time intervals, diluted 

with CHCl3 (1.9 mL) and monitored by UV-vis spectroscopy. Extra care was 

taken to ensure none of the host was removed from the reaction flask.  

 

Figure 4.20. Singlet oxygen quantum yield determination of host 1 via UV-vis (A) 

Plot of DMN absorbance spectra over time of UV-irradiation. (B) Plot of DMN 

degradation versus time of UV- irradiation in presence of host 1.  
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Singlet Oxygen Quantum Yield Determination via UV-vis 

 

 

 

 

Methylene blue (0.6 mg) was added to a stock solution of 1,4-

dimethylnaphthalene in CHCl3 (16 mL of a 2.86 mM sol’n) in a vial with septum 

and purged under an O2 balloon for 10 minutes.  The sample was irradiated 

using a CFL 14W light bulb under gentle stirring in a room temperature water 

bath for 40 min.  Samples (0.1 mL) were removed at 10-minute time intervals, 

diluted with CHCl3 (1.9 mL) and monitored by UV-vis spectroscopy.  

 

 

Figure 4.21. Absorption data for DMN quenching experiments sensitized by 

methylene blue. (A) Plot of DMN absorbance spectra over time of UV-irradiation. 

(B) Plot of DMN degradation versus time of UV- irradiation in presence of the 

reference methylene blue.   
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Singlet Oxygen Quantum Yield Determination via UV-vis 

 

Figure 4.22. Comparison of absorptions obtained in 1,4-dimethylnaphthalene 
quenching experiment for methylene blue and host 1 spectra plotted versus time 
of UV-irradiation. The slopes were used to determine singlet oxygen quantum 
yield. Methylene blue was used as the reference.  

 

Φ[1O2]host 1 = Φ[1O2]MB (mhost 1/ mMB)  (Eq’n 4.2) 

Φ[1O2]host 1 = 12% 

Where, mhost 1 = slope of host plot = 0.0028 

MMB = slope of reference plot = 0.0123 

Φ[1O2]MB = quantum yield of reference = 0.52 

Φ[1O2]host 1 = quantum yield of host 1 
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The host:guest ratio was determined using TGA using the following equation: 

 

𝑯𝒐𝒔𝒕: 𝑮𝒖𝒆𝒔𝒕 =
𝒎𝒐𝒍𝒔 𝒐𝒇 𝒉𝒐𝒔𝒕

𝒎𝒐𝒍𝒔 𝒐𝒇 𝒈𝒖𝒆𝒔𝒕
     (Eq’n 4.3) 

 

 

 

Figure 4.23. Thermogravimetric Analysis (TGA) plots were used to determine 

how well different guest load into host 1. The TGA was heated at a ramp rate of 4 

°C/min to 180 °C and show the removal of guest molecules from the host. Most 

guests displayed 1-step desorption curves. (A) TGA of the host 1•2 complex 

shows a one-step desorption with a weight loss of 8.2% from 20-80°C which is 

attributed to the loss of the alkene from the host channels. The host:guest 

stoichiometry was calculated from the weight loss using Eq’n 3 to be 2:1. (B) 

TGA of the host 1•DMPO complex exhibited a two-step desorption curve from 20 

to 140°C with a total weight loss of 37.1%. NMR suggests that the first desorption 

step accounts for the loss of water. The second step is attributed to the loss of 

DMPO which accounted for 31.3% of the weight loss, from which the host:guest 

stoichiometry was calculated to be 1:2. The following guests loaded were loaded: 

dimethylsulfoxide (DMSO), 1-methyl-1-cyclohexene (2), 2,2,6,6-tetramethyl 

piperidine (TMP), 5,5-dimethyl-1-pyrroline N-oxide (DMPO), pyridine, N,N-

dimethylaniline(DMA), and N,N,N’,N’-tetramethylethylenediamine (TMEDA). 

 



www.manaraa.com

 

 237 

 

Table 4.3. Host:Guest ratios calculated from TGA desorption curves.a 

 

a TGA samples heated at a ramp rate of 4 °C/min to 180 °C unless otherwise 
specified. bHeated to 200°C. 

 

 

Photooxidation Procedures: Recrystallized needles of 1 were activated 

using TGA before any photooxidations were carried out.  

Catalytic Reactions: To borosilicate vials, emptied host (2.0±0.1 mg) was 

added followed by oxygenated solvents that were purged for 15 minutes under 

pure oxygen (benzene or chloroform, 1.0 mL). Next, 1-methyl-1-cyclohexene (2.5 

μL) was added to each vial, which were sealed under oxygen and parafilmed. 

The samples were irradiated in a Rayonet reactor with gentle agitation. Following 

irradiation samples were tested for peroxides and quenched with 

triphenylphosphine. The samples were diluted with dichloromethane and 

examined with GC-MS.  
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Solid-state Reactions: 1-Methyl-1-cyclohexene was allowed to vapor 

load into host 1 (16.0±1 mg) for at least 24 hours. Next, each sample was cooled 

in a dry-ice/acetone bath and purged under pure oxygen for 15 minutes and 

parafilmed. The samples were irradiated for 5 hours with a Hanovia 450W 

medium pressure mercury arc lamp cooled in a quartz emersion well at 0 °C. 

Following irradiation, samples were extracted into triphenylphosphine-saturated 

tetrahydrofuran with sonication. The samples were diluted with dichloromethane 

and examined with GC-MS.  

 

 

 

 

Figure 4.24. GC trace of 2 photooxidation carried out as a solid-state complex 

within 1 as the photosensitizer. Top: THF Blank. Middle: 1-methyl-1-cyclohexene 

(2) and 1-methyl-cyclohex-2-en-1-ol (5) standards. Bottom: the reaction mixture 

of extracted products. *DMSO contamination. 
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Host 1 photoxidation of 1-methyl-1-cyclohexene in chloroform  

 

 

Figure 4.25. GC-MS data for the photooxidation of 2 sensitized by host 1 and 

carried out in chloroform. Top: GC-trace of products extracted diluted into 

dichloromethane (triplicates). Bottom: mass spectra of key materials: (A) starting 

material 2, (B) epoxide 6, (C) chlorohydrin 754, and (D) chlorohydrin 854. *1-

Methylcyclohex-2-en-1-ol (5) was also formed, but not as a major product, and 

co-elutes with cyclohexanone.  
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Figure 4.26. GC-MS data of 2 photooxidation carried out as a solid-state 

complex within 1 as the photosensitizer.  Top: GC-trace of products extracted 

into THF. Bottom: mass spectra of key materials; (A) standard of tertiary alcohol 

5, (B) tertiary alcohol 5, (C) enone 10, and (D) diol 9.  
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Host 1 photoxidation of 1-methyl-1-cyclohexene in benzene

 

Figure 4.27. GC-MS traces of 2 photooxidation in the benzene (top) and 
benzene-δ6 (bottom) mediated by 1. Due to lower conversion of starting material, 
a zoomed-in view of the products region of each chromatogram is also shown. 
*Oxidation product of solvent: phenol (top) and phenol-δ6 (bottom) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.28.  Airborne Singlet oxygen decay curve at the outer 

surface of host 1. Experimental data (black line) and fitting of the 

airborne singlet oxygen decay component (red line) are shown. 

τ∆airborne was determined by a non-linear least squares curve-fitting 

procedure in Origin software. All loaded quenchers (pyridine, 

DMSO, DMA and TMEDA) exhibited similar τ∆airborne lifetimes.   
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APPENDIX A 

SYNTHESIS OF DIBROMONAPTHALENE TETRACARBOXYLIC 

DIANHYDRIDE AND PYRIDONE BINDING SITE 

 

 

 

 

 

Synthesis of 4,9-dibromoisochromeno[6,5,4-def]isochromene-1,3,6,8-

tetraone (X): A suspension of dibromoisocyanuric acid (10.4519g, 36.45 mmol) 

in sulfuric acid (40 mL) was added drop-wise to a stirring suspension of 1,4,5,8-

naphthalenetetra-carboxylic dianhydride (5.0856 g, 18.96 mmol) in concentrated 

sulfuric acid (40 mL) over 45 minutes. The mixture was stirred at room 

temperature for 15 minutes then heated to 130 ° C and was stirred for 16 hours. 

The hot mixture was then poured into ice water (800 mL) and the resulting yellow 

precipitate was filtered and washed with acetone (250 mL), methanol (250 mL), 

and water (250 mL). The pale-yellow product was dried under vacuum (2.202 g, 

27.13%).  1H-NMR: (300 MHz; DMSO) δ=8.79 (2H, s). ESI-MS [M + H]+ 

423.8213.  
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Synthesis of (E)-N- (2-acetamidophenyl)-3-ethoxyacrylamide (XI): A 

25 mL round bottom flask was charged with o-acetylaminoaniline (517.9 mg, 3.45 

mmol), THF (3.0 mL), and pyridine (0.443 mL, 5.42 mmol). The flask was placed 

in an ice-bath and stirred for five minutes to allow the solution to cool. Next, 

ethoxyacryloyl chloride (730.4 mg, 5.42 mmol) was added drop-wise keeping the 

temperature between 0-5 C. The mixture was then warmed to room temperature 

and was stirred for 3 hours. The round bottom was then placed in an ice bath and 

the pH was adjusted to 5 with HCl (1N). Next, the mixture was diluted with DI-

water (3.0 mL) and the THF was removed in vacuo. The remaining slurry was 

diluted with toluene (2.5 mL) and was stirred at room temperature for 15 minutes 

and was then placed in and ice-bath and was stirred at 0C for one hour. The 

resulting solid was then collected via vacuum filtration and was washed with DI 

water (2x75 mL) and was then recrystallized in ethyl acetate and methanol to 

afford XI (559.9 mg, 66%) as white crystals. 1H NMR (DMSO):  = 1.28 (t, 3H, 

J=6.9), 2.06 (s, 3H), 3.96 (q, 2H, J=7.2), 5.61 (d, 1H, J=12.3), 7.11 (m, 2H), 7.49 

(t, 1H, J= 4.8), 7.53 (s, 1H), 7.65 (dd, 1H, J= 1.8, 1.5), 9.13 (s, 1H), 9.39 (s, 1H). 

ESI-MS [M + H]+ 248.  
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Synthethis of N-( 2-oxo-1,2-dihydroquinolin-8-yl) acetamide (XII): XI 

(555.0 mg, 2.24 mmol) was slowly added to stirring sulfuric acid (5.0 mL) and 

was stirred and room temperature for 2.5 hours. The mixture was then 

precipitated into ice water (200 mL). Once the ice melted, the precipitate was 

collected via vacuum filtration and was washed with DI water (3 x 10 mL). The 

white solid was then dried under vacuum to afford XII as a white feathery product 

(249 mg, 55 %). 1H NMR (DMSO):  = 2.12 (s, 3H), 6.52 (d, 1H, J=8.7), 7.16 (t, 

1H, J=7.5), 7.50 (d, 1H, J=7.2), 7.63 (d, 1H, J= 6.6), 7.93 (d, 1H, J=9.3), 9.52 (s, 

1H), 11.05 (s, 1H). ESI-MS [M + H]+ 202. 

 

Synthesis of N-(2-oxo-1,2,3,4-tetrahydroquinolin-8-yl) acetamide 

(XIII): Crude XII (249.0 mg, 1.23 mmol) was placed in a 2-neck round bottom 

flask and methanol (15.0 mL) was added. The resulting mixture was sparged with 

Nitrogen for three minutes and then was charged with 10% Pd/C (140.4 mg, 1.32 

mmol). The flask was then equipped with a balloon containing Hydrogen gas and 
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the RBF was then sparged with Argon for 3 minutes before the balloon was 

opened to the system. Slowly the flask was heated to 50 C until the absorption 

of hydrogen had ceased (20 hours). The system was closed off to the hydrogen 

balloon and was then purged with Nitrogen for five minutes before the balloon 

was removed. The solution was then filtered through a PTFE filter to remove the 

Pd/C catalyst and the resulting solution was concentrated under vacuum to a XIII 

as a white powder (238.7 mg, 95%). 1H NMR (DMSO):  = 2.06 (s, 3H) 2.45 

(comp, 2H), 2.89 (t, 2H, J=7.8), 6.91 (t, 1H, J=7.8), 7.01 (d, 1H, J=6.9), 7.27 (d, 

1H, J= 7.5), 9.35 (d, 2H, J=7.5). 

 

 

Synthesis of 8-amino-3,4-dihydroquinolin-2(1H)-one (XIV): A mixture 

of XIII (238.7 mg, 1.47 mmol) and 20% HCl (3.0 mL) was heated under reflux for 

one hour. The reaction mixture was cooled, poured onto ice water, and 

neutralized with 1 N NaOH. The product was extracted with ethyl acetate (3x150 

mL), washed with water (2x100 mL), and dried with MgSO4. The organic layer 

was then concentrated in vacuo. The resulting product was recrystallized with 

ethanol to produce brass needle-like crystals (70 mg, 37%). The crystals were 

submitted for XRD, and the structure was solved by by Mark Smith. 1H NMR 
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(DMSO):  = 2.39 (t, 2H, J=7.2), 2.77 (t, 2H, J=7.2), 5.01 (s, 2H), 6.41 (d, 1H, 

J=6.6), 6.52 (d, 1H, J= 7.5), 6.66 (t, 1H, J=7.2), 9.28 (s, 1H).  

 

 

SC-XRD of 8-amino-3,4-dihydroquinolin-2(1H)-one (XIV): The 

compound crystallized as rough-textured bundles of needle crystals, from which 

a fragment suitable for data collection was cleaved apart. X-ray intensity data 

were collected at 100(2) K using a Bruker D8 QUEST diffractometer equipped 

with a PHOTON 100 CMOS area detector and an Incoatec microfocus source 

(Mo Ka radiation, l = 0.71073 Å).1 The raw area detector data frames were 

reduced, scaled and corrected for absorption effects using the SAINT+ and 

SADABS programs.1 Final unit cell parameters were determined by least-

squares refinement of 7325 reflections taken from the data set. The structure 

was solved by direct methods with SHELXT.2 Subsequent difference Fourier 
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calculations and full-matrix least-squares refinement against F2 were performed 

with SHELXL-20142 using OLEX2.3 

The compound crystallizes in the monoclinic system. The pattern of 

systematic absences in the intensity data was consistent with the space group 

P21/n, which was verified by structure solution. The asymmetric unit consists of 

one unique molecule. Non-hydrogen atoms were refined with anisotropic 

displacement parameters. Hydrogen atoms were located in difference maps and 

refined freely. The largest residual electron density peak in the final difference 

map was 0.30 e-/Å3, located 0.70 Å from C4. 

Identification code    BD_XIV 

Empirical formula    C9H10N2O 

Formula weight    162.19 

Temperature/K    100(2) 

Crystal system    monoclinic 

Space group     P21/n 

a/Å      10.1403(7) 

b/Å      5.6192(4) 

c/Å      13.6897(9) 

α/°      90 

β/°      101.135(2) 

γ/°      90 

Volume/Å3     765.36(9) 
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Z      4 

ρcalcg/cm3     1.408 

μ/mm-1     0.095 

F(000)     344.0 

Crystal size/mm3    0.2 × 0.14 × 0.08 

Radiation     MoKα (λ = 0.71073) 

2Θ range for data collection/°  4.6 to 55.116 

Index ranges    -13 ≤ h ≤ 13, -6 ≤ k ≤ 7, -17 ≤ l ≤ 17 

Reflections collected   23034 

Independent reflections   1759 [Rint = 0.0590, Rsigma = 0.0211] 

Data/restraints/parameters  1759/0/150 

Goodness-of-fit on F2  1.088 

Final R indexes[I>=2σ (I)]  R1 = 0.0407, wR2 = 0.0874 

Final R indexes [all data]   R1 = 0.0510, wR2 = 0.0914 

Largest diff. peak/hole / e Å-3  0.30/-0.19 
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APPENDIX B 

SC-XRD OF HOST 1 CRYSTALLIZED  
FROM PROPYLENE CARBONATE 

 

X-ray intensity data from a colorless plate crystal were collected at 100(2) 

K using a Bruker D8 QUEST diffractometer equipped with a PHOTON 100 

CMOS area detector and an Incoatec microfocus source (Mo Ka radiation, l = 

0.71073 Å).1 The raw area detector data frames were reduced and corrected for 

absorption effects using the SAINT+ and SADABS programs.1 Final unit cell 
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parameters were determined by least-squares refinement of 9970 reflections 

taken from the data set. The structure was solved by direct methods with 

SHELXT.2 Subsequent difference Fourier calculations and full-matrix least-

squares refinement against F2 were performed with SHELXL-20142 using 

OLEX2.3 

 The compound crystallizes in the monoclinic system. The pattern of 

systematic absences in the intensity data was consistent with the space group 

P21/c, which was confirmed by structure solution. The asymmetric unit consists of 

half of one molecule, which is located on a crystallographic inversion center. All 

non-hydrogen atoms were refined with anisotropic displacement parameters. 

Hydrogen atoms bonded to carbon were located in difference maps before being 

included as riding atoms with refined isotropic displacement parameters. 

Hydrogen atoms bonded to nitrogen were located in difference maps and refined 

freely. The largest residual electron density peak in the final difference map is 

0.28 e-/Å3, located 0.71 Å from C6. 

Identification code  BDHost1PC  

Empirical formula  C32H28N4O4  

Formula weight  532.58  

Temperature/K  100(2)  

Crystal system  monoclinic  

Space group  P21/c  

a/Å  12.7548(6)  

b/Å  11.2321(5)  

c/Å  9.1540(4)  
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α/°  90  

β/°  94.021(2)  

γ/°  90  

Volume/Å3  1308.20(10)  

Z  2  

ρcalcg/cm3  1.352  

μ/mm-1  0.091  

F(000)  560.0  

Crystal size/mm3  0.22 × 0.08 × 0.02  

Radiation  MoKα (λ = 0.71073)  

2Θ range for data collection/°  4.838 to 52.822  

Index ranges  -15 ≤ h ≤ 15, -14 ≤ k ≤ 14, -11 ≤ l ≤ 10  

Reflections collected  46495  

Independent reflections  2679 [R
int

 = 0.0476, R
sigma

 = 0.0148]  

Data/restraints/parameters  2679/0/202  

Goodness-of-fit on F2  1.025  

Final R indexes [I>=2σ (I)]  R1 = 0.0334, wR2 = 0.0833  

Final R indexes [all data]  R1 = 0.0425, wR2 = 0.0885  

Largest diff. peak/hole / e Å-3  0.28/-0.19  
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PERMISSION TO REPRINT: CHAPTER 2 
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